Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 29(13)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38999139

RESUMEN

With the intensification of the energy crisis, it is urgent to vigorously develop new environment-friendly energy storage materials. In this work, coexisting ferroelectric and relaxor-ferroelectric phases at a nanoscale were constructed in Sr(Zn1/3Nb2/3)O3 (SZN)-modified (Bi0.5Na0.5)0.94Ba0.06TiO3 (BNBT) ceramics, simultaneously contributing to large polarization and breakdown electric field and giving rise to a superior energy storage performance. Herein, a high recoverable energy density (Wrec) of 5.0 J/cm3 with a conversion efficiency of 82% at 370 kV/cm, a practical discharged energy density (Wd) of 1.74 J/cm3 at 230 kV/cm, a large power density (PD) of 157.84 MW/cm3, and an ultrafast discharge speed (t0.9) of 40 ns were achieved in the 0.85BNBT-0.15SZN ceramics characterized by the coexistence of a rhombohedral-tetragonal phase (ferroelectric state) and a pseudo-cubic phase (relaxor-ferroelectric state). Furthermore, the 0.85BNBT-0.15SZN ceramics also exhibited excellent temperature stability (25-120 °C) and cycling stability (104 cycles) of their energy storage properties. These results demonstrate the great application potential of 0.85BNBT-0.15SZN ceramics in capacitive pulse energy storage devices.

2.
Molecules ; 29(19)2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39407531

RESUMEN

Uninterrupted breakthroughs in the room temperature piezoelectric properties of KNN-based piezoceramics have been witnessed over the past two decades; however, poor temperature stability presents a major challenge for KNN-based piezoelectric ceramics in their effort to replace their lead-based counterparts. Herein, to enhance temperature stability in KNN-based ceramics while preserving the high piezoelectric response, multilayer composite ceramics were fabricated using textured thick films with distinct polymorphic phase transition temperatures. The results demonstrated that the composite ceramics exhibited both outstanding piezoelectric performance (d33~467 ± 16 pC/N; S~0.17% at 40 kV/cm) and excellent temperature stability with d33 and strain variations of 9.1% and 2.9%, respectively, over a broad temperature range of 25-180 °C. This superior piezoelectric temperature stability is attributed to the inter-inhibitive piezoelectric fluctuations between the component layers, the diffused phase transition, and the stable phase structure with a rising temperature, as well as the permanent contribution of crystal orientation to piezoelectric performance over the studied temperature range. This novel strategy, which addresses the piezoelectric and strain temperature sensitivity while maintaining high performance, is well-positioned to advance the commercial application of KNN-based lead-free piezoelectric ceramics.

3.
Artículo en Inglés | MEDLINE | ID: mdl-39370846

RESUMEN

Lead-free dielectric ceramics exhibiting excellent energy storage capacity, long service life, and good safety have been considered to have immense prospects in next-generation pulsed power capacitors. However, it is still challenging to simultaneously achieve large recoverable energy density (Wrec), high efficiency (η), and excellent charge-discharge performance. Herein, we fabricated lead-free (1 - x)(Bi0.5Na0.5)TiO3-x(Sr0.7Bi0.1La0.1)TiO3 ((1 - x)BNT-xSBLT) dielectric ceramics, and a good balance between Wrec ∼ 4.15 J/cm3 and η ∼ 93.89% under 333 kV/cm, as well as superior charge-discharge properties (power density PD ∼ 185.42 MW/cm3, discharge energy density Wd ∼ 2.2 J/cm3, and discharge time t0.9 ∼ 53.8 ns under 250 kV/cm), was achieved in 0.6BNT-0.4SBLT ceramics. The good energy storage performance can be attributed to the synergistic contributions of significantly enhanced Eb caused by grain refinement and the large ΔP values induced by polar nanoregions (PNRs) under a high external electric field. Moreover, the 0.6BNT-0.4SBLT ceramics also present excellent temperature stability of energy storage properties (the variations of Wrec and η less than 0.45% and 0.14%, respectively) over a temperature range of 25-185 °C. These figures of merit make 0.6BNT-0.4SBLT ceramics the most promising candidate for energy storage capacitors in advanced pulse power systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA