Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Anal Bioanal Chem ; 416(2): 419-430, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37962610

RESUMEN

Legionella pneumophila is a persistent opportunistic pathogen that poses a significant threat to domestic water systems. Previous studies suggest that copper (Cu) is an effective antimicrobial in water systems. A rapid and sensitive quantification method is desired to optimize the conditions of L. pneumophila treatment by Cu and to better understand the interaction mechanisms between Cu and cells. In this study, we developed a highly sensitive single cell (SC)-ICP-MS method to monitor L. pneumophila cell concentration and track their uptake of Cu. The SC-ICP-MS method showed excellent sensitivity (with a cell concentration detection limit of 1000 cells/mL), accuracy (good agreement with conventional hemocytometry method), and precision (relative standard deviation < 5%) in drinking water matrix. The cupric ions (Cu2+) treatment results indicated that the total L. pneumophila cell concentration, Cu mass per cell, colony-forming unit counting, and Cu concentration in supernatant all exhibited a dose-dependent trend, with 800-1200 µg/L reaching high disinfection rates in drinking water. The investigation of percentages of viable and culturable, viable but nonculturable (VBNC), and lysed cells suggested there always were VBNC present at any Cu concentration. Experimental results of different Cu2+ treatment times further suggested that L. pneumophila cells developed an antimicrobial resistant mechanism with the prolonged Cu exposure. This is the first quantification study on the interactions of Cu and L. pneumophila in drinking water using SC-ICP-MS.


Asunto(s)
Antiinfecciosos , Agua Potable , Legionella pneumophila , Abastecimiento de Agua , Cobre , Microbiología del Agua
2.
Ecol Eng ; 128: 48-56, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31631948

RESUMEN

A constructed, variable-flow treatment wetland was evaluated for its ability to reduce microbial loads from the Banklick Creek, an impacted recreational waterway in Northern Kentucky. For this study, levels of traditional (Escherichia coli and enterococci measured by culture and molecular techniques) and alternative fecal indicators (infectious somatic and F+ coliphage, Clostridium spp. and Clostridium perfringens by culture), potential pathogens (molecular signal of Campylobacter spp.) as well as various microbial source tracking (MST) markers (human fecal marker HF183 and avian fecal marker GFD) were monitored during the summer and early fall through five treatment stages within the Banklick Creek Wetland. No difference in concentrations of traditional or alternative fecal indicators were observed in any of the sites monitored. Microbial source tracking markers were employed to identify sources of fecal contamination within the wetland. Human marker HF183 concentrations at beginning stages of treatment were found to be significantly higher (P value range: 0.0016-0.0003) than levels at later stages. Conversely, at later stages of treatment where frequent bird activity was observed, Campylobacter and avian marker (GFD) signals were detected at significantly higher frequencies (P value range: 0.024 to <0.0001), and both signals were strongly correlated (P = 0.0001). Our study suggests constructed wetlands are an effective means for removal of microbial contamination in ambient waters, but reliance on general fecal indicators is not ideal for determining system efficacy or assessing appropriate remediation efforts.

3.
Appl Environ Microbiol ; 84(6)2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29330183

RESUMEN

Campylobacter spp. are major causes of gastroenteritis worldwide. The virulence potential of Campylobacter shed in crow feces obtained from a roost area in Bothell, Washington, was studied and compared with that from isolates from other parts of Washington and from a different crow species 7,000 miles away in Kolkata, India. Campylobacter organisms were isolated from 61% and 69% of the fecal samples obtained from Washington and Kolkata, respectively, and were confirmed to be C. jejuni The cytolethal distending toxin (CDT) gene cluster from these isolates revealed a truncated sequence of approximately 1,350 bp. Sequencing of the gene cluster revealed two types of mutations: a 668-bp deletion across cdtA and cdtB and a 51-bp deletion within cdtB Some strains had additional 20-bp deletions in cdtB In either case, a functional toxin is not expected; a functional toxin is produced by the expression of three tandem genes, cdtA, cdtB, and cdtC Reverse transcriptase PCR with total RNA extracted from the isolates showed no expression of cdtB A toxin assay performed with these isolates on HeLa cells failed to show cytotoxic effects on the cells. However, the isolates were able to colonize the chicken ceca for a period of at least 4 weeks, similar to that of a clinical isolate. Other virulence gene markers, flagellin A and CadF, were present in 100% of the isolates. Our study suggests that crows carry the bacterium C. jejuni but with a dysfunctional toxin protein that is expected to drastically reduce its potential to cause diarrhea.IMPORTANCE Campylobacters are a major cause of gastroenteritis in humans. Since outbreaks have most often been correlated with poultry or unpasteurized dairy products, contact with farm animals, or contaminated water, historically, the majority of the studies have been with campylobacter isolates from poultry, domestic animals, and human patients. However, the bacterium has a broad host range that includes birds. These reservoirs need to be investigated, because the identification of the source and a determination of the transmission routes for a pathogen are important for the development of evidence-based disease control programs. In this study, two species of the human-commensal crow, from two different geographical regions separated by 7,000 miles of land and water, have been examined for their ability to cause disease by shedding campylobacters. Our results show that the crow may not play a significant role in campylobacteriosis, because the campylobacter organisms they shed produce a nonfunctional toxin.


Asunto(s)
Secuencia de Bases , Enfermedades de las Aves/microbiología , Infecciones por Campylobacter/veterinaria , Campylobacter jejuni/fisiología , Campylobacter jejuni/patogenicidad , Cuervos , Eliminación de Secuencia , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Infecciones por Campylobacter/microbiología , Campylobacter jejuni/genética , Tracto Gastrointestinal/microbiología , Genes Bacterianos , India , Familia de Multigenes , Mutación , Virulencia , Washingtón
4.
Environ Eng Sci ; 35(5): 462-471, 2018 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32704228

RESUMEN

Use of biotrickling filter (BTF) for gas phase treatment of volatile trihalomethanes (THMs) stripped from water treatment plants could be an attractive treatment option. The aim of this study is to use laboratory-scale anaerobic BTF to treat gaseous chloroform (recalcitrant to biological transformation) as a model THM and compare results with aerobic BTF. Additional investigations were conducted to determine the microbial diversity present within the BTFs. Chloroform is a hydrophobic volatile THM known to be difficult to biodegrade. To improve the degradation process, ethanol was used as a cometabolite at a different ratio to chloroform. The experimental plan was designed to operate one BTF under anaerobic condition and the other one under aerobic acidic condition. Higher elimination capacity (EC) of 0.23 ± 0.01 g/[m3·h] was observed with a removal efficiency of 80.9% ± 4% for the aerobic BTF operating at pH 4 for the concentration ratio of 1:40 chloroform to ethanol. For similar ratio, the anaerobic BTF supported lower removal efficiency of 59% ± 10% with corresponding lower EC of 0.16 ± 0.01 g/[m3·h]. Carbon recovery acquired for anaerobic and aerobic BTFs was 59% and 63%, respectively. The loading rate for chloroform on both BTFs was 0.27 g/[m3·h] (per m3 of filter bed volume). Variations of the microbial community were attributed to degradation of chloroform in each BTF. Azospira oryzae and Azospira restrica were the dominant bacteria and potential candidates for chloroform degradation for the anaerobic BTF, whereas Fusarium sp. and Fusarium solani were the dominant fungi and potential candidates for chloroform degradation in the aerobic BTF.

5.
Appl Environ Microbiol ; 81(2): 630-9, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25381242

RESUMEN

Water conservation efforts have focused on gray water (GW) usage, especially for applications that do not require potable water quality. However, there is a need to better understand environmental pathogens and their free-living amoeba (FLA) hosts within GW, given their growth potential in stored gray water. Using synthetic gray water (sGW) we examined three strains of the water-based pathogen Legionella pneumophila and its FLA hosts Acanthamoeba polyphaga, A. castellanii, and Vermamoeba vermiformis. Exposure to sGW for 72 h resulted in significant inhibition (P < 0.0001) of amoebal encystation versus control-treated cells, with the following percentages of cysts in sGW versus controls: A. polyphaga (0.6 versus 6%), A. castellanii (2 versus 62%), and V. vermiformis (1 versus 92%), suggesting sGW induced maintenance of the actively feeding trophozoite form. During sGW exposure, L. pneumophila culturability decreased as early as 5 h (1.3 to 2.9 log10 CFU, P < 0.001) compared to controls (Δ0 to 0.1 log10 CFU) with flow cytometric analysis revealing immediate changes in membrane permeability. Furthermore, reverse transcription-quantitative PCR was performed on total RNA isolated from L. pneumophila cells at 0 to 48 h after sGW incubation, and genes associated with virulence (gacA, lirR, csrA, pla, and sidF), the type IV secretion system (lvrB and lvrE), and metabolism (ccmF and lolA) were all shown to be differentially expressed. These results suggest that conditions within GW may promote interactions between water-based pathogens and FLA hosts, through amoebal encystment inhibition and alteration of bacterial gene expression, thus warranting further exploration into FLA and L. pneumophila behavior in GW systems.


Asunto(s)
Acanthamoeba/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Legionella pneumophila/efectos de los fármacos , Lobosea/efectos de los fármacos , Esporas Protozoarias/efectos de los fármacos , Factores de Virulencia/biosíntesis , Acanthamoeba/fisiología , Citometría de Flujo , Legionella pneumophila/genética , Lobosea/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Esporas Protozoarias/crecimiento & desarrollo , Factores de Tiempo , Microbiología del Agua
6.
J Water Health ; 12(4): 763-71, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25473986

RESUMEN

A quantitative polymerase chain reaction assay (115 bp amplicon) specific to Escherichia coli K12 with an ABI(TM) internal control was developed based on sequence data encoding the rfb gene cluster. Assay specificity was evaluated using three E. coli K12 strains (ATCC W3110, MG1655 & DH1), 24 non-K12 E. coli and 23 bacterial genera. The biofilm detection limit was 10(3) colony-forming units (CFU) E. coli K12 mL(-1), but required a modified protocol, which included a bio-blocker Pseudomonas aeruginosa with ethylenediaminetetraacetic acid buffered to pH 5 prior to cell lysis/DNA extraction. The novel protocol yielded the same sensitivity for drinking water biofilms associated with Fe3O4 (magnetite)-coated SiO2 (quartz) grains and biofilm-surface iron corrosion products from a drinking water distribution system. The novel DNA extraction protocol and specific E. coli K12 assay are sensitive and robust enough for detection and quantification within iron drinking water pipe biofilms, and are particularly well suited for studying enteric bacterial interactions within biofilms.


Asunto(s)
Biopelículas/crecimiento & desarrollo , ADN Bacteriano/aislamiento & purificación , Agua Potable/microbiología , Escherichia coli K12/fisiología , Hierro/metabolismo , Abastecimiento de Agua/análisis , Corrosión , ADN Bacteriano/genética , Escherichia coli K12/genética , Escherichia coli K12/aislamiento & purificación , Límite de Detección , Datos de Secuencia Molecular , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/aislamiento & purificación , Pseudomonas aeruginosa/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ADN , Especificidad de la Especie
7.
Toxins (Basel) ; 16(2)2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38393148

RESUMEN

Harmful cyanobacterial blooms (HCBs) are of growing global concern due to their production of toxic compounds, which threaten ecosystems and human health. Saxitoxins (STXs), commonly known as paralytic shellfish poison, are a neurotoxic alkaloid produced by some cyanobacteria. Although many field studies indicate a widespread distribution of STX, it is understudied relative to other cyanotoxins such as microcystins (MCs). In this study, we assessed eleven U.S. urban lakes using qPCR, sxtA gene-targeting sequencing, and 16S rRNA gene sequencing to understand the spatio-temporal variations in cyanobacteria and their potential role in STX production. During the blooms, qPCR analysis confirmed the presence of the STX-encoding gene sxtA at all lakes. In particular, the abundance of the sxtA gene had a strong positive correlation with STX concentrations in Big 11 Lake in Kansas City, which was also the site with the highest quantified STX concentration. Sequencing analysis revealed that potential STX producers, such as Aphanizomenon, Dolichospermum, and Raphidiopsis, were present. Further analysis targeting amplicons of the sxtA gene identified that Aphanizomenon and/or Dolichospermum are the primary STX producer, showing a significant correlation with sxtA gene abundances and STX concentrations. In addition, Aphanizomenon was associated with environmental factors, such as conductivity, sulfate, and orthophosphate, whereas Dolichospermum was correlated with temperature and pH. Overall, the results herein enhance our understanding of the STX-producing cyanobacteria and aid in developing strategies to control HCBs.


Asunto(s)
Aphanizomenon , Cianobacterias , Humanos , Saxitoxina/análisis , Lagos/análisis , ARN Ribosómico 16S/genética , Ecosistema , Cianobacterias/genética , Aphanizomenon/genética
8.
Sci Total Environ ; 933: 172690, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38670361

RESUMEN

Nitrification is a serious water-quality issue in chloraminated engineered water systems (EWSs). Nitrification is often remediated by a chlorine burn (i.e., a free­chlorine conversion), a short-term switch from chloramination to chlorination in EWSs. Opportunistic pathogens (OPs) are the dominant infectious agents in EWSs. However, the responses of OPs to a chlorine burn are unknown. This study for the first time assessed how a chlorine burn affected OPs in a full-scale EWS. We determined the impact of a 1.5-month chlorine burn on four dominant OPs (Legionella, Mycobacterium, Pseudomonas, and Vermamoeba vermiformis) in a representative full-scale chloraminated EWS in the United States. Legionella and Mycobacterium were the most abundant OPs. In the water main, the summed concentration of the four OPs during the chlorine burn [3.27 ± 1.58 log10(GCN·L-1); GCN: genome or gene copy number] was lower (p ≤ 0.001) than before the burn [4.83 ± 0.50 log10(GCN·L-1)]. After the burn, the summed concentration increased to 4.27 ± 0.68 log10(GCN·L-1), comparable to before the burn (p > 0.05), indicating a transient effect of the chlorine burn in the water main. At the residential sites, the summed concentrations of the four OPs were comparable (p > 0.05) at 5.50 ± 0.84, 5.27 ± 1.44, and 5.08 ± 0.71 log10(GCN·L-1) before, during, and after the chlorine burn, respectively. Therefore, the chlorine burn was less effective in suppressing OP (re)growth in the premise plumbing. The low effectiveness might be due to more significant water stagnation and disinfectant residual decay in the premise plumbing. Indeed, for the entire sampling period, the total chlorine residual concentration in the premise plumbing (1.8 mg Cl2·L-1) was lower than in the water main (2.4 mg Cl2·L-1). Consequently, for the entire sampling period, the summed concentration of the four OPs in the premise plumbing [5.26 ± 1.08 log10(GCN·L-1)] was significantly higher (p < 0.001) than in the water main [4.04 ± 1.25 log10(GCN·L-1)]. In addition, the chlorine burn substantially increased the levels of disinfection by-products (DBPs) in the water main. Altogether, a chlorine burn is transient or even ineffective in suppressing OP (re)growth but raises DBP concentrations in chloraminated EWSs. Therefore, the practice of chlorine burns to control nitrification should be optimized, reconsidered, or even replaced.


Asunto(s)
Cloraminas , Cloro , Microbiología del Agua , Purificación del Agua , Purificación del Agua/métodos , Desinfectantes , Halogenación , Calidad del Agua
9.
J Water Resour Prot ; 16: 140-155, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38487714

RESUMEN

Previously, we showed that prophylactic addition of glucose to Harsha Lake water samples could inhibit cyanobacteria growth, at least for a short period of time. The current study tested cyanobacterial control with glucose for the entire Harsha Lake bloom season. Water samples (1000 ml) were collected weekly from Harsha Lake during the algal-bloom season starting June 9 and lasting until August 24, 2022. To each of two 7-liter polypropylene containers, 500 ml of Harsha Lake water was added, and the containers were placed in a controlled environment chamber. To one container labeled "Treated," 0.15 g of glucose was added, and nothing was added to the container labeled "Control." After that, three 25 ml samples from each container were collected and used for 16S rRNA gene sequencing each week. Then 1000 ml of Harsha Lake water was newly collected each week, with 500 ml added to each container, along with the addition of 0.15 g glucose to the "Treated" container. Sequencing data were used to examine differences in the composition of bacterial communities between Treated and Control containers. Treatment with glucose altered the microbial communities by 1) reducing taxonomic diversity, 2) largely eliminating cyanobacterial taxa, and 3) increasing the relative abundance of subsets of non-cyanobacterial taxa (such as Proteobacteria and Actinobacteriota). These effects were observed across time despite weekly inputs derived directly from Lake water. The addition of glucose to a container receiving weekly additions of Lake water suppressed the cyanobacterial populations during the entire summer bloom season. The glucose appears to stimulate the diversity of certain bacterial taxa at the expense of the cyanobacteria.

10.
Appl Environ Microbiol ; 79(12): 3762-9, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23584775

RESUMEN

The risk to human health of the annual sandhill crane (Grus canadensis) migration through Nebraska, which is thought to be a major source of fecal pollution of the central Platte River, is unknown. To better understand potential risks, the presence of Campylobacter species and three fecal indicator bacterial groups (Enterococcus spp., Escherichia coli, and Bacteroidetes) was assayed by PCR from crane excreta and water samples collected during their stopover at the Platte River, Nebraska, in 2010. Genus-specific PCR assays and sequence analyses identified Campylobacter jejuni as the predominant Campylobacter species in sandhill crane excreta. Campylobacter spp. were detected in 48% of crane excreta, 24% of water samples, and 11% of sediment samples. The estimated densities of Enterococcus spp. were highest in excreta samples (mean, 4.6 × 10(8) cell equivalents [CE]/g), while water samples contained higher levels of Bacteroidetes (mean, 5.1 × 10(5) CE/100 ml). Enterococcus spp., E. coli, and Campylobacter spp. were significantly increased in river water and sediments during the crane migration period, with Enterococcus sp. densities (~3.3 × 10(5) CE/g) 2 to 4 orders of magnitude higher than those of Bacteroidetes (4.9 × 10(3) CE/g), E. coli (2.2 × 10(3) CE/g), and Campylobacter spp. (37 CE/g). Sequencing data for the 16S rRNA gene and Campylobacter species-specific PCR assays indicated that C. jejuni was the major Campylobacter species present in water, sediments, and crane excreta. Overall, migration appeared to result in a significant, but temporary, change in water quality in spring, when there may be a C. jejuni health hazard associated with water and crops visited by the migrating birds.


Asunto(s)
Migración Animal , Enfermedades de las Aves/epidemiología , Enfermedades de las Aves/microbiología , Infecciones por Campylobacter/veterinaria , Campylobacter/genética , Heces/microbiología , Animales , Bacteroidetes/genética , Secuencia de Bases , Aves , Infecciones por Campylobacter/epidemiología , Clonación Molecular , Enterococcus/genética , Escherichia coli/genética , Datos de Secuencia Molecular , Nebraska/epidemiología , Reacción en Cadena de la Polimerasa/veterinaria , Dinámica Poblacional , Análisis de Secuencia de ADN/veterinaria , Microbiología del Suelo/normas , Microbiología del Agua/normas , Calidad del Agua/normas
11.
Appl Environ Microbiol ; 79(8): 2713-20, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23416998

RESUMEN

Copper ions are an effective antimicrobial agent used to control Legionnaires' disease and Pontiac fever arising from institutional drinking water systems. Here, we present data on an alternative bactericidal agent, copper oxide nanoparticles (CuO-NPs), and its efficacy on Legionella pneumophila. In broth cultures, the CuO-NPs caused growth inhibition, which appeared to be concentration and exposure time dependent. The transcriptomic response of L. pneumophila to CuO-NP exposure was investigated by using a whole-genome microarray. The expression of genes involved in metabolism, transcription, translation, DNA replication and repair, and unknown/hypothetical proteins was significantly affected by exposure to CuO-NPs. In addition, expression of 21 virulence genes was also affected by exposure to CuO-NP and further evaluated by quantitative reverse transcription-PCR (qRT-PCR). Some virulence gene responses occurred immediately and transiently after addition of CuO-NPs to the cells and faded rapidly (icmV, icmW, lepA), while expression of other genes increased within 6 h (ceg29, legLC8, legP, lem19, lem24, lpg1689, and rtxA), 12 h (cegC1, dotA, enhC, htpX, icmE, pvcA, and sidF), and 24 h (legP, lem19, and ceg19), but for most of the genes tested, expression was reduced after 24 h of exposure. Genes like ceg29 and rtxA appeared to be the most responsive to CuO-NP exposures and along with other genes identified in this study may prove useful to monitor and manage the impact of drinking water disinfection on L. pneumophila.


Asunto(s)
Cobre/farmacología , Expresión Génica/efectos de los fármacos , Legionella pneumophila/efectos de los fármacos , Nanopartículas del Metal , Antibacterianos/farmacología , Legionella pneumophila/genética , Legionella pneumophila/metabolismo , Nanopartículas del Metal/química , Oligoelementos/farmacología , Transcripción Genética/efectos de los fármacos
12.
Sci Rep ; 13(1): 2806, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36797305

RESUMEN

Cyanobacteria and cyanotoxin producing cyanobacterial blooms are a trending focus of current research. Many studies focus on bloom events in lentic environments such as lakes or ponds. Comparatively few studies have explored lotic environments and fewer still have examined the cyanobacterial communities and potential cyanotoxin producers during ambient, non-bloom conditions. Here we used a metagenomics-based approach to profile non-bloom microbial communities and cyanobacteria in 12 major U.S. rivers at multiple time points during the summer months of 2019. Our data show that U.S. rivers possess microbial communities that are taxonomically rich, yet largely consistent across geographic location and time. Within these communities, cyanobacteria often comprise significant portions and frequently include multiple species with known cyanotoxin producing strains. We further characterized these potential cyanotoxin producing taxa by deep sequencing amplicons of the microcystin E (mcyE) gene. We found that rivers containing the highest levels of potential cyanotoxin producing cyanobacteria consistently possess taxa with the genetic potential for cyanotoxin production and that, among these taxa, the predominant genus of origin for the mcyE gene is Microcystis. Combined, these data provide a unique perspective on cyanobacteria and potential cyanotoxin producing taxa that exist in large rivers across the U.S. and can be used to better understand the ambient conditions that may precede bloom events in lotic freshwater ecosystems.


Asunto(s)
Cianobacterias , Microbiota , Microcystis , Estados Unidos , Cianobacterias/genética , Ríos/microbiología , Lagos/microbiología , Microcistinas/genética
13.
Water Res ; 235: 119679, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37011576

RESUMEN

Phytoplankton is the essential primary producer in fresh surface water ecosystems. However, excessive phytoplankton growth due to eutrophication significantly threatens ecologic, economic, and public health. Therefore, phytoplankton identification and quantification are essential to understanding the productivity and health of freshwater ecosystems as well as the impacts of phytoplankton overgrowth (such as Cyanobacterial blooms) on public health. Microscopy is the gold standard for phytoplankton assessment but is time-consuming, has low throughput, and requires rich experience in phytoplankton morphology. Quantitative polymerase chain reaction (qPCR) is accurate and straightforward with high throughput. In addition, qPCR does not require expertise in phytoplankton morphology. Therefore, qPCR can be a useful alternative for molecular identification and enumeration of phytoplankton. Nonetheless, a comprehensive study is missing which evaluates and compares the feasibility of using qPCR and microscopy to assess phytoplankton in fresh water. This study 1) compared the performance of qPCR and microscopy in identifying and quantifying phytoplankton and 2) evaluated qPCR as a molecular tool to assess phytoplankton and indicate eutrophication. We assessed phytoplankton using both qPCR and microscopy in twelve large freshwater rivers across the United States from early summer to late fall in 2017, 2018, and 2019. qPCR- and microscope-based phytoplankton abundance had a significant positive linear correlation (adjusted R2 = 0.836, p-value < 0.001). Phytoplankton abundance had limited temporal variation within each sampling season and over the three years studied. The sampling sites in the midcontinent rivers had higher phytoplankton abundance than those in the eastern and western rivers. For instance, the concentration (geometric mean) of Bacillariophyta, Cyanobacteria, Chlorophyta, and Dinoflagellates at the sampling sites in the midcontinent rivers was approximately three times that at the sampling sites in the western rivers and approximately 18 times that at the sampling sites in the eastern rivers. Welch's analysis of variance indicates that phytoplankton abundance at the sampling sites in the midcontinent rivers was significantly higher than that at the sampling sites in the eastern rivers (p-value = 0.013) but was comparable to that at the sampling sites in the western rivers (p-value = 0.095). The higher phytoplankton abundance at the sampling sites in the midcontinent rivers was presumably because these rivers were more eutrophic. Indeed, low phytoplankton abundance occurred in oligotrophic or low trophic sites, whereas eutrophic sites had greater phytoplankton abundance. This study demonstrates that qPCR-based phytoplankton abundance can be a useful numerical indicator of the trophic conditions and water quality in freshwater rivers.


Asunto(s)
Cianobacterias , Fitoplancton , Estados Unidos , Ecosistema , Cianobacterias/genética , Ríos , Agua Dulce/microbiología , Eutrofización , Estaciones del Año , China
14.
Microorganisms ; 11(3)2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36985221

RESUMEN

Populations of resident, non-migratory Canada geese are rapidly increasing. Canada geese are known to transmit viral and bacterial diseases, posing a possible threat to human health. The most prevalent pathogens vectored by geese are Campylobacter species, yet the current understanding of the identity and virulence of these pathogens is limited. In our previous study, we observed a high prevalence of Campylobacter spp. in the Banklick Creek wetland-a constructed treatment wetland (CTW) located in northern KY (USA) used to understand sources of fecal contamination originating from humans and waterfowl frequenting the area. To identify the types of Campylobacter spp. found contaminating the CTW, we performed genetic analyses of Campylobacter 16s ribosomal RNA amplified from CTW water samples and collected fecal material from birds frequenting those areas. Our results showed a high occurrence of a Campylobacter canadensis-like clade from the sampling sites. Whole-genome sequence analyses of an isolate from Canada goose fecal material, called MG1, were used to confirm the identity of the CTW isolates. Further, we examined the phylogenomic position, virulence gene content, and antimicrobial resistance gene profile of MG1. Lastly, we developed an MG1-specific real-time PCR assay and confirmed the presence of MG1 in Canada goose fecal samples surrounding the CTW. Our findings reveal that the Canada goose-vectored Campylobacter sp. MG1 is a novel isolate compared to C. canadensis that possesses possible zoonotic potential, which may be of human health concern.

15.
Appl Environ Microbiol ; 78(12): 4338-45, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22492437

RESUMEN

While the microbial water quality in the Platte River is seasonally impacted by excreta from migrating cranes, there are no methods available to study crane fecal contamination. Here we characterized microbial populations in crane feces using phylogenetic analysis of 16S rRNA gene fecal clone libraries. Using these sequences, a novel crane quantitative PCR (Crane1) assay was developed, and its applicability as a microbial source tracking (MST) assay was evaluated by determining its host specificity and detection ability in environmental waters. Bacteria from crane excreta were dominated by bacilli and proteobacteria, with a notable paucity of sequences homologous to Bacteroidetes and Clostridia. The Crane1 marker targeted a dominant clade of unclassified Lactobacillales sequences closely related to Catellicoccus marimammalium. The host distribution of the Crane1 marker was relatively high, being positive for 69% (66/96) of the crane excreta samples tested. The assay also showed high host specificity, with 95% of the nontarget fecal samples (i.e., n = 553; 20 different free-range hosts) being negative. Of the presumed crane-impacted water samples (n = 16), 88% were positive for the Crane1 assay, whereas none of the water samples not impacted by cranes were positive (n = 165). Bayesian statistical models of the Crane1 MST marker demonstrated high confidence in detecting true-positive signals and a low probability of false-negative signals from environmental water samples. Altogether, these data suggest that the newly developed marker could be used in environmental monitoring studies to study crane fecal pollution dynamics.


Asunto(s)
Técnicas Bacteriológicas/métodos , Biota , Heces/microbiología , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Microbiología del Agua , Contaminación del Agua , Animales , Aves , Cartilla de ADN/genética , ADN Bacteriano/química , ADN Bacteriano/genética , Datos de Secuencia Molecular , Análisis de Secuencia de ADN
16.
Chemosphere ; 302: 134784, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35504465

RESUMEN

Nitrogen (N) cycling is an essential process in lake systems and N-fixation is an important component of it. Recent studies have also found that nitrate reduction through heterotrophic denitrification in lake systems did not prevent harmful cyanobacterial blooms, but instead, may have favored the dominance of N2-fixing cyanobacteria. The overall objective of this study was to estimate nitrogen fixation rates and the expressions of associated nitrogenase (nif gene) functional gene at several sites at different occasions in freshwater Utah Lake. For comparison purposes, one time sampling was also conducted in the brackish Farmington Bay of Great Salt Lake (GSL). The microbial ecology of the top 20-cm of surface water was investigated to assess the dominant cyanobacterial communities and N-related metabolisms. Our study revealed that Dolichospermum and Nodularia were potential N2-fixers for Utah Lake and brackish Farmington Bay, respectively. The in situ N2-fixation rates were 0-0.73 nmol N hr-1L-1 for Utah Lake and 0-0.85 nmol N hr-1L-1 for Farmington Bay, and these rates positively correlated with the abundance and expressions of the nif gene. In addition, nitrate reduction was measured in sediment (0.002-0.094 mg N VSS-1 hr-1). Significantly positive correlations were found among amoA, nirS and nirK abundance (R = 0.56-0.87, p < 0.05, Spearman) in both lakes. An exception was the lower nirK gene abundance detected at one site in Farmington Bay where high ammonium retentions were also detected. Based on a mass balance approach, we concluded that the amount of inorganic N loss through denitrification still exceeded the N input by N2-fixation, much like in most lakes, rivers, and marine ecosystems. This indicates that N cycling processes such as denitrification mediated by heterotrophic bacteria contributes to N-export from the lakes resulting in N limitations.


Asunto(s)
Cianobacterias , Lagos , Cianobacterias/genética , Cianobacterias/metabolismo , Ecosistema , Eutrofización , Lagos/microbiología , Nitratos , Nitrógeno/análisis , Fijación del Nitrógeno , Utah
17.
Life (Basel) ; 12(5)2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35629409

RESUMEN

To ensure drinking-water safety, it is necessary to understand the factors that regulate harmful cyanobacterial blooms (HCBs) and the toxins they produce. One controlling factor might be any relationship between fungi and the cyanobacteria. To test this possibility, water samples were obtained from Harsha Lake in southwestern Ohio during the 2015, 2016, and 2017 bloom seasons, i.e., late May through September. In each water sample, the concentration of the filamentous fungus Cladosporium cladosporioides was determined by quantitative PCR (qPCR) assay, and Microcystis aeruginosa microcystin-gene transcript copy number (McyG TCN) was quantified by reverse-transcriptase qPCR (RT-qPCR) analyses. The results showed that during each bloom season, the C. cladosporioides concentration and McyG TCN appeared to be interrelated. Therefore, C. cladosporioides concentrations were statistically evaluated via regression on McyG TCN in the water samples for lag times of 1 to 7 days. The regression equation developed to model the relationship demonstrated that a change in the C. cladosporioides concentration resulted in an opposing change in McyG TCN over an approximately 7-day interval. Although the interaction between C. cladosporioides and McyG TCN was observed in each bloom season, the magnitude of each component varied yearly. To better understand this possible interaction, outdoor Cladosporium spore-count data for the Harsha Lake region were obtained for late May through September of each year from the South West Ohio Air Quality Agency. The average Cladosporium spore count in the outdoor air samples was significantly greater in 2016 than in either 2015 or 2017, and the M. aeruginosa McyG TCN was significantly lower in Harsha Lake water samples in 2016 compared to 2015 or 2017. These results suggest that there might be a "balanced antagonism" between C. cladosporioides and M. aeruginosa during the bloom season.

18.
Life (Basel) ; 12(3)2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35330137

RESUMEN

To mitigate harmful cyanobacterial blooms (HCBs), toxic algicides have been used, but alternative methods of HCB prevention are needed. Our goal was to test the prophylactic addition of glucose to inhibit HCB development, using Microcystis and the toxin microcystin as the HCB model. Water samples were collected weekly, from 4 June to 2 July, from Harsha Lake in southwestern Ohio during the 2021 algal bloom season. From each weekly sample, a 25 mL aliquot was frozen for a 16S rRNA gene sequencing analysis. Then, 200 mL of Harsha Lake water was added to each of the three culture flasks, and glucose was added to create concentrations of 0 mM (control), 1.39 mM, or 13.9 mM glucose, respectively. The microcystin concentration in each flask was measured after 1 and 2 weeks of incubation. The results showed an 80 to 90% reduction in microcystin concentrations in glucose-treated water compared to the control. At the end of the second week of incubation, a 25 mL sample was also obtained from each of the culture flasks for molecular analysis, including a 16S rRNA gene sequencing and qPCR-based quantification of Microcystis target genes. Based on these analyses, the glucose-treated water contained significantly lower Microcystis and microcystin producing gene (mcy) copy numbers than the control. The 16S rRNA sequencing analysis also revealed that Cyanobacteria and Proteobacteria were initially the most abundant bacterial phyla in the Harsha Lake water, but as the summer progressed, Cyanobacteria became the dominant phyla. However, in the glucose-treated water, the Cyanobacteria decreased and the Proteobacteria increased in weekly abundance compared to the control. This glucose-induced proteobacterial increase in abundance was driven primarily by increases in two distinct families of Proteobacteria: Devosiaceae and Rhizobiaceae. In conclusion, the prophylactic addition of glucose to Harsha Lake water samples reduced Cyanobacteria's relative abundance, Microcystis numbers and microcystin concentrations and increased the relative abundance of Proteobacteria compared to the control.

19.
Toxins (Basel) ; 15(1)2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36668822

RESUMEN

Mitigating cyanotoxin production is essential to protecting aquatic ecosystems and public health. However, current harmful cyanobacterial bloom (HCB) control strategies have significant shortcomings. Because predicting HCBs is difficult, current HCB control strategies are employed when heavy HCBs have already occurred. Our pilot study developed an effective HCB prediction approach that is employed before exponential cyanobacterial growth and massive cyanotoxin production can occur. We used a quantitative polymerase chain reaction (qPCR) assay targeting the toxin-encoding gene mcyA to signal the timing of treatment. When control measures were applied at an early growth stage or one week before the exponential growth of Microcystis aeruginosa (predicted by qPCR signals), both hydrogen peroxide (H2O2) and the adsorbent hydroxyapatite (HAP) effectively stopped M. aeruginosa growth and microcystin (MC) production. Treatment with either H2O2 (10 mg·L-1) or HAP (40 µm particles at 2.5 g·L-1) significantly reduced both mcyA gene copies and MC levels compared with the control in a dose-dependent manner. While both treatments reduced MC levels similarly, HAP showed a greater ability to reduce mcyA gene abundance. Under laboratory culture conditions, H2O2 and HAP also prevented MC production when applied at the early stages of the bloom when mcyA gene abundance was below 105 copies·mL-1.


Asunto(s)
Microcystis , Microcystis/genética , Peróxido de Hidrógeno , Microcistinas/genética , Ecosistema , Proyectos Piloto , Hidroxiapatitas
20.
Sci Total Environ ; 830: 154568, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35302035

RESUMEN

Freshwater harmful cyanobacterial blooms (HCBs) potentially produce excessive cyanotoxins, mainly microcystins (MCs), significantly threatening aquatic ecosystems and public health. Accurately predicting HCBs is thus essential to developing effective HCB mitigation and prevention strategies. We previously developed a novel early-warning system that uses cyanotoxin-encoding genes to predict cyanotoxin production in Harsha Lake, Ohio, USA, in 2015. In this study, we evaluated the efficacy of the early-warning system in forecasting the 2016 HCB in the same lake. We also examined potential HCB drivers and cyanobacterial community composition. Our results revealed that the cyanobacterial community was stable at the phylum level but changed dynamically at the genus level over time. Microcystis and Planktothrix were the major MC-producing genera that thrived in June and July and produced high concentrations of MCs (peak level 10.22 µg·L-1). The abundances of the MC-encoding gene cluster mcy and its transcript levels significantly correlated with total MC concentrations (before the MC concentrations peaked) and accurately predicted MC production as revealed by logistic equations. When the Microcystis-specific gene mcyG reached approximately 1.5 × 103 copies·mL-1 or when its transcript level reached approximately 2.4 copies·mL-1, total MC level exceeded 0.3 µg L-1 (a health advisory limit) approximately one week later (weekly sampling scheme). This study suggested that cyanotoxin-encoding genes are promising predictors of MC production in inland freshwater lakes, such as Harsha Lake. The evaluated early-warning system can be a useful tool to assist lake managers in predicting, mitigating, and/or preventing HCBs.


Asunto(s)
Cianobacterias , Microcystis , Cianobacterias/genética , Toxinas de Cianobacterias , Ecosistema , Hexaclorobenceno , Lagos/microbiología , Microcistinas/genética , Microcystis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA