Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Entropy (Basel) ; 21(3)2019 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33266960

RESUMEN

Recently, an image encryption algorithm based on DNA encoding and spatiotemporal chaos (IEA-DESC) was proposed. In IEA-DESC, pixel diffusion, DNA encoding, DNA-base permutation and DNA decoding are performed successively to generate cipher-images from the plain-images. Some security analyses and simulation results are given to prove that it can withstand various common attacks. However, in this paper, it is found that IEA-DESC has some inherent security defects as follows: (1) the pixel diffusion is invalid for attackers from the perspective of cryptanalysis; (2) the combination of DNA encoding and DNA decoding is equivalent to bitwise complement; (3) the DNA-base permutation is actually a fixed position shuffling operation for quaternary elements, which has been proved to be insecure. In summary, IEA-DESC is essentially a combination of a fixed DNA-base position permutation and bitwise complement. Therefore, IEA-DESC can be equivalently represented as simplified form, and its security solely depends on the equivalent secret key. So the equivalent secret key of IEA-DESC can be recovered using chosen-plaintext attack and chosen-ciphertext attack, respectively. Theoretical analysis and experimental results show that the two attack methods are both effective and efficient.

2.
Chaos ; 26(2): 023106, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26931587

RESUMEN

Power systems are special multi-agent systems with nonlinear coupling function and symmetric structures. This paper extends these systems to a class of multi-agent systems with mismatched parameters, linear coupling function, and asymmetric structures and investigates their velocity synchronization via sampled position data. The dynamics of the agents is adopted as that of generators with mismatched parameters, while the system structures are supposed to be complex. Two distributed linear consensus protocols are designed, respectively, for multi-agent systems without or with communication delay. Necessary and sufficient conditions based on the sampling period, the mismatched parameters, the delay, and the nonzero eigenvalues of the Laplacian matrix are established. It is shown that velocity synchronization of multi-agent systems with mismatched parameters can be achieved if the sampled period is chosen appropriately. Simulations are given to illustrate the effectiveness of the theoretical results.

3.
Chaos ; 25(11): 113104, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26627564

RESUMEN

Synchronization of complex networks has been extensively investigated in various fields. In the real world, one network is usually affected by another one but coexists in harmony with it, which can be regarded as another kind of synchronization--generalized synchronization (GS). In this paper, the GS in two-layer complex networks with unidirectional inter-layer coupling via pinning control is investigated based on the auxiliary-system approach. Specifically, for two-layer networks under study, one is considered as the drive network and the other is the response one. According to the auxiliary-system approach, output from the drive layer is designed as input for the response one, and an identical duplication of the response layer is constructed, which is driven by the same driving signals. A sufficient condition for achieving GS via pinning control is presented. Numerical simulations are further provided to illustrate the correctness of the theoretical results. It is also revealed that the least number of pinned nodes needed for achieving GS decreases with the increasing density of the response layer. In addition, it is found that when the intra-layer coupling strength of the response network is large, nodes with larger degrees should be selected to pin first for the purpose of achieving GS. However, when the coupling strength is small, it is more preferable to pin nodes with smaller degrees. This work provides engineers with a convenient approach to realize harmonious coexistence of various complex systems, which can further facilitate the selection of pinned systems and reduce control cost.

4.
Chaos ; 25(3): 033101, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25833423

RESUMEN

Network synchronized regions play an extremely important role in network synchronization according to the master stability function framework. This paper focuses on network synchronous state stability via studying the effects of nodal dynamics, coupling delay, and coupling way on synchronized regions in Logistic map networks. Theoretical and numerical investigations show that (1) network synchronization is closely associated with its nodal dynamics. Particularly, the synchronized region bifurcation points through which the synchronized region switches from one type to another are in good agreement with those of the uncoupled node system, and chaotic nodal dynamics can greatly impede network synchronization. (2) The coupling delay generally impairs the synchronizability of Logistic map networks, which is also dominated by the parity of delay for some nodal parameters. (3) A simple nonlinear coupling facilitates network synchronization more than the linear one does. The results found in this paper will help to intensify our understanding for the synchronous state stability in discrete-time networks with coupling delay.

5.
Chaos ; 24(1): 013141, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24697403

RESUMEN

In this paper, we further investigate the synchronization of complex dynamical network via pinning control in which a selection of nodes are controlled at discrete times. Different from most existing work, the pinning control algorithms utilize only the impulsive signals at discrete time instants, which may greatly improve the communication channel efficiency and reduce control cost. Two classes of algorithms are designed, one for strongly connected complex network and another for non-strongly connected complex network. It is suggested that in the strongly connected network with suitable coupling strength, a single controller at any one of the network's nodes can always pin the network to its homogeneous solution. In the non-strongly connected case, the location and minimum number of nodes needed to pin the network are determined by the Frobenius normal form of the coupling matrix. In addition, the coupling matrix is not necessarily symmetric or irreducible. Illustrative examples are then given to validate the proposed pinning impulsive control algorithms.

6.
IEEE Trans Cybern ; 54(4): 2460-2471, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37028086

RESUMEN

The finite-time output time-varying formation tracking (TVFT) problem for heterogeneous nonlinear multiagent system (MAS) is investigated in this article, where the dynamics of the agents can be nonidentical, and leader's input is unknown. The target of this article is that the outputs of followers need to track leader's output and realize the desired formation in finite time. First, for removing the assumption that all agents are required to know the information of leader's system matrices and the upper boundary of its unknown control input in previous studies, a kind of finite-time observer is constructed by exploiting the neighboring information, which can estimate not only the leader's state and system matrices but also can compensate for the effects of unknown input. On the basis of the developed finite-time observers and adaptive output regulation method, a novel finite-time distributed output TVFT controller is proposed with the help of the technique of coordinate transformation by introducing an extra variable, which removes the assumption that the generalized inverse matrix of follows' input matrix needs to be found in the existing results. By means of the Lyapunov and finite-time stability theory, it is proven that the expected finite-time output TVFT can be realized by the considered heterogeneous nonlinear MASs within a finite time. Finally, simulation results demonstrate the efficacy of the proposed approach.

7.
IEEE Trans Cybern ; PP2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38421853

RESUMEN

For strict-feedback systems with mismatched uncertainties, adaptive fuzzy control techniques are developed to provide global prescribed performance with prescribed-time convergence. First, a class of prescribed-time prescribed performance functions are designed to quantify the performance constraints of the tracking error. Additionally, a novel error transformation function is provided to eliminate the initial value limitations and resolve the singularity issue in previous research. To ensure the convergence of the tracking error into a prescribed bounded region within a prescribed time and satisfactory transient performance, controllers with or without approximating structures are established. Notably, the settling time and initial condition of the prescribed performance function are completely independent of the initial tracking error and system parameters, thereby improving upon existing results. Furthermore, the disadvantage of the semi-global boundedness of tracking error induced by dynamic surface control can be eliminated through the use of a novel Lyapunov-like energy function. Finally, the effectiveness of the proposed strategies is validated through numerical simulations performed on practical examples.

8.
Artículo en Inglés | MEDLINE | ID: mdl-38619956

RESUMEN

This article proposes a quantum spatial graph convolutional neural network (QSGCN) model that is implementable on quantum circuits, providing a novel avenue to processing non-Euclidean type data based on the state-of-the-art parameterized quantum circuit (PQC) computing platforms. Four basic blocks are constructed to formulate the whole QSGCN model, including the quantum encoding, the quantum graph convolutional layer, the quantum graph pooling layer, and the network optimization. In particular, the trainability of the QSGCN model is analyzed through discussions on the barren plateau phenomenon. Simulation results from various types of graph data are presented to demonstrate the learning, generalization, and robustness capabilities of the proposed quantum neural network (QNN) model.

9.
IEEE Trans Cybern ; PP2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38498756

RESUMEN

Pinning control has been attracting wide attention for the study of various complex networks for decades. This article explores grounded theory on the pinning synchronization of the emerging multiplex dynamical networks. The multiplex dynamical networks under study can describe many real-world scenarios, in which different layers have distinct individual dynamics of node. In this work, we build the bridge between multiplex structures and network dynamics by using the Lyapunov stability theory and the spectral graph theory. Furthermore, by analyzing spectral properties of the grounded super-Laplacian matrices, we set up several graph-based synchronization criteria for multiplex networks via pinning control. In addition, we overcome the difficulties induced by distinct node dynamics in different layers, and find that interlayer coupling strengths promote intralayer synchronization of multiplex networks. Finally, a collection of numerical simulations verifies the effectiveness of theoretical results.

10.
Chaos ; 23(4): 043118, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24387557

RESUMEN

The dynamic analysis of a continuous-time multi-agent swarm model with nonlinear profiles is investigated in this paper. It is shown that, under mild conditions, all agents in a swarm can reach cohesion within a finite time, where the upper bounds of the cohesion are derived in terms of the parameters of the swarm model. The results are then generalized by considering stochastic noise and switching between nonlinear profiles. Furthermore, swarm models with limited sensing range inducing changing communication topologies and unbounded repulsive interactions between agents are studied by switching system and nonsmooth analysis. Here, the sensing range of each agent is limited and the possibility of collision among nearby agents is high. Finally, simulation results are presented to demonstrate the validity of the theoretical analysis.


Asunto(s)
Modelos Biológicos , Procesos Estocásticos
11.
IEEE Trans Cybern ; 53(4): 2622-2635, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35427230

RESUMEN

This article investigates uniformly predefined-time bounded consensus of leader-following multiagent systems (MASs) with unknown system nonlinearity and external disturbance via distributed adaptive fuzzy control. First, uniformly predefined-time-bounded stability is analyzed and a sufficient condition is derived for the system to achieve semiglobally (globally) uniformly predefined-time-bounded consensus. Therein, the settling time is independent of initial conditions and can be defined in advance. Then, for first-order MASs, distributed adaptive fuzzy controllers are designed by combining neighboring consensus errors to drive all following agents to globally track the leader's state within predefined time. For second-order MASs, by formulating filtered errors, the consensus errors between following agents and the leader are shown to be bounded if the filtered errors are bounded. Furthermore, with the distributed controllers designed based on filtered errors, second-order MASs achieve semiglobally uniformly predefined-time-bounded leader-following consensus. Finally, two numerical examples are simulated, including: 1) a first-order leader-following MAS and 2) a second-order Lagrangian system consisting of single-link manipulators, to demonstrate the performance of the proposed controllers.

12.
IEEE Trans Cybern ; 53(11): 6951-6962, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35604980

RESUMEN

In this article, an augmented game approach is proposed for the formulation and analysis of distributed learning dynamics in multiagent games. Through the design of the augmented game, the coupling structure of utility functions among all the players can be reformulated into an arbitrary undirected connected network while the Nash equilibria are preserved. In this case, any full-information game learning dynamics can be recast into a distributed form, and its convergence can be determined from the structure of the augmented game. We apply the proposed approach to generate both deterministic and stochastic distributed gradient play and obtain several negative convergent results about the distributed gradient play: 1) a Nash equilibrium is convergent under the classic gradient play, yet its corresponding augmented Nash equilibrium may be not convergent under the distributed gradient play and, on the other side, 2) a Nash equilibrium is not convergent under the classic gradient play, yet its corresponding augmented Nash equilibrium may be convergent under the distributed gradient play. In particular, we show that the variational stability structure (including monotonicity as a special case) of a game is not guaranteed to be preserved in its augmented game. These results provide a systematic methodology about how to formulate and then analyze the feasibility of distributed game learning dynamics.

13.
IEEE Trans Neural Netw Learn Syst ; 34(2): 571-585, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33332276

RESUMEN

Nonoccurring behavior (NOB) studies have attracted the growing attention of scholars as a crucial part of behavioral science. As an effective method to discover both NOB and occurring behaviors (OB), negative sequential pattern (NSP) mining is successfully used in analyzing medical treatment and abnormal behavior patterns. At this time, NSP mining is still an active and challenging research domain. Most of the algorithms are inefficient in practice. Briefly, the key weaknesses of NSP mining are: 1) an inefficient positive sequential pattern (PSP) mining process, 2) a strict constraint of negative containment, and 3) the lack of an effective Negative Sequential Candidate (NSC) generation method. To address these weaknesses, we propose a highly efficient algorithm with improved techniques, named sc-NSP, to mine NSP efficiently. We first propose an improved PrefixSpan algorithm in the PSP mining process, which connects to a bitmap storage structure instead of the original structure. Second, sc-NSP loosens the frequency constraint and exploits the NSC generation method of positive and negative sequential patterns mining (PNSP) (a classic NSP mining method). Furthermore, a novel pruning strategy is designed to reduce the computational complexity of sc-NSP. Finally, sc-NSP obtains the support of NSC by using the most efficient bitwise-based calculation operation. Theoretical analyses show that sc-NSP performs particularly well on data sets with a large number of elements and items in sequence. Comparison and extensive experiments along with case studies on health data show that sc-NSP is 10 times more efficient than other state-of-the-art methods, and the number of NSPs obtained is 5 times greater than other methods.

14.
IEEE Trans Cybern ; 53(6): 3675-3687, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35333728

RESUMEN

The distributed Nash equilibrium (NE) seeking problem for multicoalition games has attracted increasing attention in recent years, but the research mainly focuses on the case without agreement demand within coalitions. This article considers a class of networked games among multiple coalitions where each coalition contains multiple agents that cooperate to minimize the sum of their costs, subject to the demand of reaching an agreement on their state values. Furthermore, the underlying network topology among the agents does not need to be balanced. To achieve the goal of NE seeking within such a context, two estimates are constructed for each agent, namely, an estimate of partial derivatives of the cost function and an estimate of global state values, based on which, an iterative state updating law is elaborately designed. Linear convergence of the proposed algorithm is demonstrated. It is shown that the consistency-constrained multicoalition games investigated in this article put the well-studied networked games among individual players and distributed optimization in a unified framework, and the proposed algorithm can easily degenerate into solutions to these problems.

15.
IEEE Trans Cybern ; 53(8): 5191-5201, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35727790

RESUMEN

The practical output containment problem for heterogeneous nonlinear multiagent systems under external disturbances generated by an exosystem is investigated in this article. It is required that the outputs of followers converge to the predefined convex combination of leaders' outputs. One of the major challenges in solving such a problem lies in dealing with the coupling among different nonlinearities, state dimensions, and system matrices of heterogeneous agents. To overcome the aforementioned challenge, a distributed observer-based control protocol is developed and employed. First, an adaptive state observer for estimating the states of all the leaders is constructed based on the neighboring interactions. Second, two new classes of observers are constructed for each follower exploiting the output information of the follower, in which the adaptive neural networks (NNs)-based approximation is exploited to compensate for the unknown nonlinearity in the followers' dynamics. A practical output containment control protocol is then generated by the proposed observers, where the control parameters are determined by an algorithm including two steps. Furthermore, with the help of the Lyapunov stability theory and the output regulation method, the practical output containment criteria for the considered closed-loop system under the influences of external disturbances are derived on the basis of the presented control protocol. Finally, the derived theoretical results are illustrated by a simulation example.

16.
IEEE Trans Cybern ; PP2023 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-37368814

RESUMEN

This article proposes an optimal controller for a team of underactuated quadrotors with multiple active leaders in containment control tasks. The quadrotor dynamics are underactuated, nonlinear, uncertain, and subject to external disturbances. The active team leaders have control inputs to enhance the maneuverability of the containment system. The proposed controller consists of a position control law to guarantee the achievement of position containment and an attitude control law to regulate the rotational motion, which are learned via off-policy reinforcement learning using historical data from quadrotor trajectories. The closed-loop system stability can be guaranteed by theoretical analysis. Simulation results of cooperative transportation missions with multiple active leaders demonstrate the effectiveness of the proposed controller.

17.
IEEE Trans Neural Netw Learn Syst ; 34(12): 10589-10599, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35522636

RESUMEN

Modeling the spatiotemporal relationship (STR) of traffic data is important yet challenging for existing graph networks. These methods usually capture features separately in temporal and spatial dimensions or represent the spatiotemporal data by adopting multiple local spatial-temporal graphs. The first kind of method mentioned above is difficult to capture potential temporal-spatial relationships, while the other is limited for long-term feature extraction due to its local receptive field. To handle these issues, the Synchronous Spatio-Temporal grAph Transformer (S2TAT) network is proposed for efficiently modeling the traffic data. The contributions of our method include the following: 1) the nonlocal STR can be synchronously modeled by our integrated attention mechanism and graph convolution in the proposed S2TAT block; 2) the timewise graph convolution and multihead mechanism designed can handle the heterogeneity of data; and 3) we introduce a novel attention-based strategy in the output module, being able to capture more valuable historical information to overcome the shortcoming of conventional average aggregation. Extensive experiments are conducted on PeMS datasets that demonstrate the efficacy of the S2TAT by achieving a top-one accuracy but less computational cost by comparing with the state of the art.

18.
Artículo en Inglés | MEDLINE | ID: mdl-35737608

RESUMEN

In this article, we consider the problem of distributed game-theoretic learning in games with finite action sets. A timestamp-based inertial best-response dynamics is proposed for Nash equilibrium seeking by players over a communication network. We prove that if all players adhere to the dynamics, then the states of players will almost surely reach consensus and the joint action profile of players will be absorbed into a Nash equilibrium of the game. This convergence result is proven under the condition of weakly acyclic games and strongly connected networks. Furthermore, to encounter more general circumstances, such as games with graphical action sets, state-based games, and switching communication networks, several variants of the proposed dynamics and its convergent results are also developed. To demonstrate the validity and applicability, we apply the proposed timestamp-based learning dynamics to design distributed algorithms for solving some typical finite games, including the coordination games and congestion games.

19.
IEEE Trans Cybern ; 52(6): 4430-4440, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33095738

RESUMEN

Fixed-time synchronization of complex networks is investigated in this article. First, a completely novel lemma is introduced to prove the fixed-time stability of the equilibrium of a general ordinary differential system, which is less conservative and has a simpler form than those in the existing literature. Then, sufficient conditions are presented to realize synchronization of a complex network (with a target system) within a settling time via three different kinds of simple controllers. In general, controllers designed to achieve fixed-time stability consist of three terms and are discontinuous. However, in our mechanisms, the controllers only contain two terms or even one term and are continuous. Thus, our controllers are simpler and of more practical applicability. Finally, three examples are provided to illustrate the correctness and effectiveness of our results.


Asunto(s)
Algoritmos , Redes Neurales de la Computación , Factores de Tiempo
20.
IEEE Trans Neural Netw Learn Syst ; 33(9): 4271-4284, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33587717

RESUMEN

Deep encoder-decoders are the model of choice for pixel-level estimation due to their redundant deep architectures. Yet they still suffer from the vanishing supervision information issue that affects convergence because of their overly deep architectures. In this work, we propose and theoretically derive an enhanced deep supervision (EDS) method which improves on conventional deep supervision (DS) by incorporating variance minimization into the optimization. A new structure variance loss is introduced to build a bridge between deep encoder-decoders and variance minimization, and provides a new way to minimize the variance by forcing different intermediate decoding outputs (paths) to reach an agreement. We also design a focal weighting strategy to effectively combine multiple losses in a scale-balanced way, so that the supervision information is sufficiently enforced throughout the encoder-decoders. To evaluate the proposed method on the pixel-level estimation task, a novel multipath residual encoder is proposed and extensive experiments are conducted on four challenging density estimation and crowd counting benchmarks. The experimental results demonstrate the superiority of our EDS over other paradigms, and improved estimation performance is reported using our deeply supervised encoder-decoder.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA