Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 317
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Immunol ; 210(1): 72-81, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36426999

RESUMEN

Fish possess a powerful IFN system to defend against aquatic virus infections. Nevertheless, spring viremia of carp virus (SVCV) causes large-scale mortality in common carp and significant economic losses to aquaculture. Therefore, it is necessary to investigate the strategies used by SVCV to escape the IFN response. In this study, we show that the SVCV nucleoprotein (N protein) negatively regulates cellular IFN production by degrading stimulator of IFN genes (STING) via the autophagy-lysosome-dependent pathway. First, overexpression of N protein inhibited the IFN promoter activation induced by polyinosinic-polycytidylic acid and STING. Second, the N protein associated with STING and experiments using a dominant-negative STING mutant demonstrated that the N-terminal transmembrane domains of STING were indispensable for this interaction. Then, the N protein degraded STING in a dose-dependent and autophagy-lysosome-dependent manner. Intriguingly, in the absence of STING, individual N proteins could not elicit host autophagic flow. Furthermore, the autophagy factor Beclin1 was found to interact with the N protein to attenuate N protein-mediated STING degradation after beclin1 knockdown. Finally, the N protein remarkably weakened STING-enhanced cellular antiviral responses. These findings reveal that SVCV uses the host autophagic process to achieve immune escape, thus broadening our understanding of aquatic virus pathogenesis.


Asunto(s)
Carpas , Enfermedades de los Peces , Infecciones por Rhabdoviridae , Rhabdoviridae , Animales , Proteínas de la Nucleocápside , Viremia , Beclina-1 , Rhabdoviridae/fisiología , Lisosomas , Autofagia
2.
J Virol ; 97(11): e0143423, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37882518

RESUMEN

IMPORTANCE: Mitochondrial antiviral signaling protein (MAVS) and stimulator of interferon (IFN) genes (STING) are key adaptor proteins required for innate immune responses to RNA and DNA virus infection. Here, we show that zebrafish transmembrane protein 47 (TMEM47) plays a critical role in regulating MAVS- and STING-triggered IFN production in a negative feedback manner. TMEM47 interacted with MAVS and STING for autophagic degradation, and ATG5 was essential for this process. These findings suggest the inhibitory function of TMEM47 on MAVS- and STING-mediated signaling responses during RNA and DNA virus infection.


Asunto(s)
Infecciones por Virus ADN , Inmunidad Innata , Interferones , Infecciones por Virus ARN , Proteínas de Pez Cebra , Pez Cebra , Animales , Infecciones por Virus ADN/inmunología , Infecciones por Virus ADN/virología , Interferones/antagonistas & inhibidores , Interferones/biosíntesis , Transducción de Señal , Pez Cebra/inmunología , Pez Cebra/metabolismo , Pez Cebra/virología , Infecciones por Virus ARN/inmunología , Infecciones por Virus ARN/virología , Retroalimentación Fisiológica , Proteínas de Pez Cebra/inmunología , Proteínas de Pez Cebra/metabolismo
3.
J Virol ; 97(7): e0053223, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37367226

RESUMEN

During viral infection, host defensive proteins either enhance the host immune response or antagonize viral components directly. In this study, we report on the following two mechanisms employed by zebrafish mitogen-activated protein kinase kinase 7 (MAP2K7) to protect the host during spring viremia of carp virus (SVCV) infection: stabilization of host IRF7 and degradation of SVCV P protein. In vivo, map2k7+/- (map2k7-/- is a lethal mutation) zebrafish showed a higher lethality, more pronounced tissue damage, and more viral proteins in major immune organs than the controls. At the cellular level, overexpression of map2k7 significantly enhanced host cell antiviral capacity, and viral replication and proliferation were significantly suppressed. Additionally, MAP2K7 interacted with the C terminus of IRF7 and stabilized IRF7 by increasing K63-linked polyubiquitination. On the other hand, during MAP2K7 overexpression, SVCV P proteins were significantly decreased. Further analysis demonstrated that SVCV P protein was degraded by the ubiquitin-proteasome pathway, as the attenuation of K63-linked polyubiquitination was mediated by MAP2K7. Furthermore, the deubiquitinase USP7 was indispensable in P protein degradation. These results confirm the dual functions of MAP2K7 during viral infection. IMPORTANCE Normally, during viral infection, host antiviral factors individually modulate the host immune response or antagonize viral components to defense infection. In the present study, we report that zebrafish MAP2K7 plays a crucial positive role in the host antiviral process. According to the weaker antiviral capacity of map2k7+/- zebrafish than that of the control, we find that MAP2K7 reduces host lethality through two pathways, as follows: enhancing K63-linked polyubiquitination to promote host IRF7 stability and attenuating K63-mediated polyubiquitination to degrade the SVCV P protein. These two mechanisms of MAP2K7 reveal a special antiviral response in lower vertebrates.


Asunto(s)
Enfermedades de los Peces , Factores Reguladores del Interferón , Proteínas Quinasas Activadas por Mitógenos , Infecciones por Rhabdoviridae , Ubiquitinación , Proteínas Estructurales Virales , Animales , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Factores Reguladores del Interferón/genética , Factores Reguladores del Interferón/metabolismo , Rhabdoviridae/genética , Rhabdoviridae/inmunología , Infecciones por Rhabdoviridae/inmunología , Infecciones por Rhabdoviridae/virología , Pez Cebra/genética , Pez Cebra/inmunología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Estabilidad Proteica , Proteolisis , Proteínas Estructurales Virales/metabolismo , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Regulación hacia Arriba
4.
PLoS Pathog ; 18(6): e1010626, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35727817

RESUMEN

From insects to mammals, both innate and adaptive immune response are usually higher in females than in males, with the sex chromosome and hormonal differences considered the main reasons. Here, we report that zebrafish cyp19a1a (cytochrome P450, family 19, subfamily A, polypeptide 1a), an autosomal gene with female-biased expression, causes female fish to exhibit a lower antiviral response. First, we successfully constructed an infection model by intraperitoneal injection of spring viremia of carp virus (SVCV) into zebrafish (Danio rerio) and Carassius auratus herpesvirus (CaHV) in gibel carp (Carassius gibelio). Specifically, female fish were more vulnerable to viral infection than males, accompanied by a significantly weaker interferon (IFN) expression. After screening several candidates, cyp19a1a, which was highly expressed in female fish tissues, was selected for further analysis. The IFN expression and antiviral response were significantly higher in cyp19a1a-/- than in cyp19a1a+/+. Further investigation of the molecular mechanism revealed that Cyp19a1a targets mediator of IRF3 activation (MITA) for autophagic degradation. Interestingly, in the absence of MITA, Cyp19a1a alone could not elicit an autophagic response. Furthermore, the autophagy factor ATG14 (autophagy-related 14) was found interacted with Cyp19a1a to either promote or attenuate Cyp19a1a-mediated MITA degradation by either being overexpressed or knocked down, respectively. At the cellular level, both the normal and MITA-enhanced cellular antiviral responses were diminished by Cyp19a1a. These findings demonstrated a sex difference in the antiviral response based on a regulation mechanism controlled by a female-biased gene besides sex chromosome and hormonal differences, supplying the current understanding of sex differences in fish.


Asunto(s)
Carpas , Enfermedades de los Peces , Herpesviridae , Animales , Antivirales/farmacología , Autofagia , Femenino , Inmunidad Innata/genética , Masculino , Mamíferos , Pez Cebra/genética
5.
Plant Cell Environ ; 47(5): 1452-1470, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38233741

RESUMEN

MicroRNAs (miRNAs) are small noncoding RNAs that play a vital role in plant responses to abiotic and biotic stresses. Recently, it has been discovered that some primary miRNAs (pri-miRNAs) encode regulatory short peptides called miPEPs. However, the presence of miPEPs in rice, and their functions in response to abiotic stresses, particularly stress induced by heavy metals, remain poorly understood. Here, we identified a functional small peptide (miPEP156e) encoded by pri-miR156e that regulates the expression of miR156 and its target SPL genes, thereby affecting miR156-mediated cadmium (Cd) tolerance in rice. Overexpression of miPEP156e led to decreased uptake and accumulation of Cd and reactive oxygen species (ROS) levels in plants under Cd stress, resulting in improved rice Cd tolerance, as observed in miR156-overexpressing lines. Conversely, miPEP156e mutants displayed sensitivity to Cd stress due to the elevated accumulation of Cd and ROS. Transcriptome analysis further revealed that miPEP156e improved rice Cd tolerance by modulating Cd transporter genes and ROS scavenging genes. Our study provides insights into the regulatory mechanism of miPEP156e in rice response to Cd stress and demonstrates the potential of miPEPs as an effective tool for improving crop abiotic stress tolerance.


Asunto(s)
MicroARNs , Oryza , MicroARNs/genética , MicroARNs/metabolismo , Cadmio/metabolismo , Oryza/fisiología , Especies Reactivas de Oxígeno/metabolismo , Péptidos/metabolismo , Regulación de la Expresión Génica de las Plantas
6.
J Immunol ; 208(9): 2196-2206, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35418468

RESUMEN

In the viral infection process, host gene function is usually reported as either defending the host or assaulting the virus. In this study, we demonstrated that zebrafish ceramide kinase-like (CERKL) mediates protection against viral infection via two distinct mechanisms: stabilization of TANK-binding kinase 1 (TBK1) through impairing K48-linked ubiquitination and degradation of spring viremia of carp virus (SVCV) P protein by dampening K63-linked ubiquitination, resulting in an improvement of the host immune response and a decline in viral activity in epithelioma papulosum cyprini (EPC) cells. On SVCV infection, ifnφ1 expression was increased or blunted by CERKL overexpression or knockdown, respectively. Subsequently, we found that CERKL localized in the cytoplasm, where it interacted with TBK1 and enhanced its stability by impeding the K48-linked polyubiquitination; meanwhile, the antiviral capacity of TBK1 was significantly potentiated by CERKL. In contrast, CERKL also interacted with and degraded SVCV P protein to disrupt its function in viral proliferation. Further mechanism analysis revealed K63-linked deubiquitination is the primary means of CERKL-mediated SVCV P protein degradation. Taken together, our study reveals a novel mechanism of fish defense against viral infection: the single gene cerkl is both a shield for the host and a spear against the virus, which strengthens resistance.


Asunto(s)
Carpas , Enfermedades de los Peces , Infecciones por Rhabdoviridae , Animales , Virus ADN , Fosfotransferasas (Aceptor de Grupo Alcohol) , Rhabdoviridae , Ubiquitinación , Proteínas Virales , Viremia , Pez Cebra , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/metabolismo
7.
Zhonghua Nan Ke Xue ; 30(1): 40-43, 2024 Jan.
Artículo en Zh | MEDLINE | ID: mdl-39046412

RESUMEN

OBJECTIVE: To explore the clinical manifestations, diagnosis, pathological features and treatment of small-cell carcinoma of the prostate (SCCP). METHODS: We conducted a retrospective analysis of the clinical and pathological data of 2 cases of confirmed SCCP treated from November 2017 to March 2018, and reviewed relevant literature. RESULTS: Both the patients had the symptoms of frequent, urgent and difficult urination, with an elevated level of PSA and gradesⅡ-Ⅲ enlargement of the prostate at palpation. One underwent prostate puncture biopsy and the other received transurethral 1470 laser vaporization resection of the tumor. Postoperative pathology indicated prostate adenocarcinoma accompanied by SCCP in both of the cases. One of them was treated by etoposide-platinum (EP) chemotherapy and died of systemic multiple organ failure 20 months after diagnosis, while the other underwent endocrine therapy and has lived with tumor up to the present day. CONCLUSION: The incidence rate of SCCP is low, its malignancy is high, and its prognosis is poor. The average survival of the patient is about 7 to 10 months after diagnosis. Currently there is no effective management of the dissease, except by relying on the experience of the treatment of small-cell lung cancer, with chemotherapy as the main option.


Asunto(s)
Carcinoma de Células Pequeñas , Neoplasias de la Próstata , Humanos , Masculino , Carcinoma de Células Pequeñas/diagnóstico , Carcinoma de Células Pequeñas/terapia , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/terapia , Neoplasias de la Próstata/patología , Estudios Retrospectivos , Etopósido/uso terapéutico , Etopósido/administración & dosificación , Anciano , Persona de Mediana Edad , Próstata/patología , Pronóstico , Adenocarcinoma/diagnóstico , Adenocarcinoma/patología , Adenocarcinoma/terapia , Antígeno Prostático Específico/sangre
8.
PLoS Pathog ; 17(2): e1009317, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33600488

RESUMEN

The transmembrane protein 33 (TMEM33) was originally identified as an endoplasmic reticulum (ER) protein that influences the tubular structure of the ER and modulates intracellular calcium homeostasis. However, the role of TMEM33 in antiviral immunity in vertebrates has not been elucidated. In this article, we demonstrate that zebrafish TMEM33 is a negative regulator of virus-triggered interferon (IFN) induction via two mechanisms: mitochondrial antiviral signaling protein (MAVS) ubiquitination and a decrease in the kinase activity of TANK binding kinase 1 (TBK1). Upon stimulation with viral components, tmem33 was remarkably upregulated in the zebrafish liver cell line. The IFNφ1 promoter (IFNφ1pro) activity and mRNA level induced by retinoic acid-inducible gene (RIG)-I-like receptors (RLRs) were significantly inhibited by TMEM33. Knockdown of TMEM33 increased host ifn transcription. Subsequently, we found that TMEM33 was colocalized in the ER and interacted with the RLR cascades, whereas MAVS was degraded by TMEM33 during the K48-linked ubiquitination. On the other hand, TMEM33 reduced the phosphorylation of mediator of IFN regulatory factor 3 (IRF3) activation (MITA)/IRF3 by acting as a decoy substrate of TBK1, which was also phosphorylated. A functional domain assay revealed that the N-terminal transmembrane domain 1 (TM1) and TM2 regions of TMEM33 were necessary for IFN suppression. Finally, TMEM33 significantly attenuated the host cellular antiviral capacity by blocking the IFN response. Taken together, our findings provide insight into the different mechanisms employed by TMEM33 in cellular IFN-mediated antiviral process.


Asunto(s)
Regulación de la Expresión Génica , Interferones/metabolismo , Hígado/metabolismo , Proteínas de la Membrana/metabolismo , Infecciones por Rhabdoviridae/virología , Proteínas de Pez Cebra/metabolismo , Animales , Hígado/inmunología , Hígado/virología , Proteínas de la Membrana/genética , Fosforilación , Rhabdoviridae/fisiología , Infecciones por Rhabdoviridae/inmunología , Infecciones por Rhabdoviridae/metabolismo , Ubiquitinación , Pez Cebra , Proteínas de Pez Cebra/genética
9.
New Phytol ; 240(6): 2436-2454, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37840365

RESUMEN

Seed size and weight are important factors that influence soybean yield. Combining the weighted gene co-expression network analysis (WGCNA) of 45 soybean accessions and gene dynamic changes in seeds at seven developmental stages, we identified candidate genes that may control the seed size/weight. Among these, a PLATZ-type regulator overlapping with 10 seed weight QTLs was further investigated. This zinc-finger transcriptional regulator, named as GmPLATZ, is required for the promotion of seed size and weight in soybean. The GmPLATZ may exert its functions through direct binding to the promoters and activation of the expression of cyclin genes and GmGA20OX for cell proliferation. Overexpression of the GmGA20OX enhanced seed size/weight in soybean. We further found that the GmPLATZ binds to a 32-bp sequence containing a core palindromic element AATGCGCATT. Spacing of the flanking sequences beyond the core element facilitated GmPLATZ binding. An elite haplotype Hap3 was also identified to have higher promoter activity and correlated with higher gene expression and higher seed weight. Orthologues of the GmPLATZ from rice and Arabidopsis play similar roles in seeds. Our study reveals a novel module of GmPLATZ-GmGA20OX/cyclins in regulating seed size and weight and provides valuable targets for breeding of crops with desirable agronomic traits.


Asunto(s)
Glycine max , Transcriptoma , Glycine max/genética , Transcriptoma/genética , Fitomejoramiento , Sitios de Carácter Cuantitativo , Semillas/genética
10.
Chemistry ; 29(40): e202300991, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37143186

RESUMEN

The preparation of diimidazolium salt HBDIM 1, a precursor for a di-NHCs ligand, from cheap and easily available agent hexabenzylhexaazaisowurtzitane (HBIW) is reported. Under basic conditions, HBDIM undergoes facile deprotonation to in situ generate CageCarbene, which could efficiently coordinate to transition-metals, such as, Au, Cu or Pd, to give the corresponding bimetallic complexes 2-4. These complexes were isolated and fully characterized, including X-ray diffraction of their single crystals. It was found that the steric hinderance of CageCarbene is similar to that of SIMes but smaller than that of IPr, and electronically, CageCarbene is a strong σ-donator similar to SIMes and a stronger σ-donator than IPr. Further studies showed that complexes 2-4 were highly reactive to catalyze up to 17 reactions. Control experiments utilizing a N-benzyl-substituted monoimidazolium salt showed much lower catalytic reactivity when it was bound to Au or Cu, but exhibited similar reactivity for the Pd complex. Kinetic studies showed that the low reactivity of the monodentate carbene-ligated Au or Cu complex was due to the low stability of the complex under the reaction conditions.

11.
J Immunol ; 207(2): 512-522, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34193603

RESUMEN

Fish IFN regulatory factor 3 (IRF3) is a crucial transcription factor in the IFN activation signaling pathway, which leads to IFN production and a positive cycle. Unrestricted IFN expression results in hyperimmune responses and therefore, IFN must be tightly regulated. In the current study, we found that zebrafish Ub-activating enzyme (Uba1) negatively regulated IRF3 via the K-48 ubiquitin proteasome degradation of IRF3. First, ifn expression stimulated by spring viraemia of carp virus infection was blunted by the overexpression of Uba1 and enhanced by Uba1 knockdown. Afterward, we found that Uba1 was localized in the cytoplasm, where it interacted with and degraded IRF3. Functional domains analysis revealed that the C-terminal ubiquitin-fold domain was necessary for IRF3 degradation by Uba1 and the N-terminal DNA-binding domain of IRF3 was indispensable for the degradation by Uba1.The degradation of IRF3 was subsequently impaired by treatment with MG132, a ubiquitin proteasome inhibitor. Further mechanism analysis revealed that Uba1 induced the K48-linked Ub-proteasomal degradation of IRF3. Finally, the antiviral capacity of IRF3 was significantly attenuated by Uba1. Taken together, our study reveals that zebrafish Uba1 interacts with and activates the ubiquitinated degradation of IRF3, providing evidence of the IFN immune balance mechanism in fish.


Asunto(s)
Factor 3 Regulador del Interferón/metabolismo , Interferón beta/metabolismo , Ubiquitinación/fisiología , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Antivirales/metabolismo , Línea Celular , Células HEK293 , Humanos , Unión Proteica/fisiología , Proteolisis , Transducción de Señal/fisiología , Ubiquitina/inmunología
12.
J Immunol ; 207(3): 784-798, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34290106

RESUMEN

In mammals, cyclic GMP-AMP synthase (cGAS) recognizes cytosolic dsDNA to induce the type I IFN response. However, the functional role of cGAS in the IFN response of fish remains unclear or controversial. In this study, we report that cGAS orthologs from crucian carp Carassius auratus (CacGAS) and grass carp Ctenopharyngodon idellus (CicGAS) target the dsRNA sensor retinoic acid-inducible gene I (RIG-I) for negative regulation of the IFN response. First, poly(deoxyadenylic-deoxythymidylic) acid-, polyinosinic-polycytidylic acid-, and spring viremia of carp virus-induced IFN responses were impaired by overexpression of CacGAS and CicGAS. Then, CacGAS and CicGAS interacted with CiRIG-I and CiMAVS and inhibited CiRIG-I- and CiMAVS-mediated IFN induction. Moreover, the K63-linked ubiquitination of CiRIG-I and the interaction between CiRIG-I and CiMAVS were attenuated by CacGAS and CicGAS. Finally, CacGAS and CicGAS decreased CiRIG-I-mediated the cellular antiviral response and facilitated viral replication. Taken together, data in this study identify CacGAS and CicGAS as negative regulators in RIG-I-like receptor signaling, which extends the current knowledge regarding the role of fish cGAS in the innate antiviral response.


Asunto(s)
Proteínas de Peces/genética , Interferón Tipo I/metabolismo , Nucleotidiltransferasas/genética , Infecciones por Rhabdoviridae/inmunología , Rhabdoviridae/fisiología , Animales , Carpas , Cyprinidae , Proteínas de Peces/inmunología , Proteínas de Peces/metabolismo , Regulación de la Expresión Génica , Carpa Dorada , Células HEK293 , Humanos , Inmunidad Innata/genética , Nucleotidiltransferasas/inmunología , Nucleotidiltransferasas/metabolismo , Transducción de Señal , Ubiquitinación , Proteínas de Pez Cebra/genética
13.
Platelets ; 34(1): 2237134, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37580876

RESUMEN

Platelet extracellular vesicles (PEVs) are an emerging delivery vehi for anticancer drugs due to their ability to target and remain in the tumor microenvironment. However, there is still a lack of understanding regarding yields, safety, drug loading efficiencies, and efficacy of PEVs. In this study, various methods were compared to generate PEVs from clinical-grade platelets, and their properties were examined as vehicles for doxorubicin (DOX). Sonication and extrusion produced the most PEVs, with means of 496 and 493 PEVs per platelet (PLT), respectively, compared to 145 and 33 by freeze/thaw and incubation, respectively. The PEVs were loaded with DOX through incubation and purified by chromatography. The size and concentration of the PEVs and PEV-DOX were analyzed using dynamic light scattering and nanoparticle tracking analysis. The results showed that the population sizes and concentrations of PEVs and PEV-DOX were in the ranges of 120-150 nm and 1.2-6.2 × 1011 particles/mL for all preparations. The loading of DOX determined using fluorospectrometry was found to be 2.1 × 106, 1.7 × 106, and 0.9 × 106 molecules/EV using freeze/thaw, extrusion, and sonication, respectively. The internalization of PEVs was determined to occur through clathrin-mediated endocytosis. PEV-DOX were more efficiently taken up by MDA-MB-231 breast cancer cells compared to MCF7/ADR breast cancer cells and NIH/3T3 cells. DOX-PEVs showed higher anticancer activity against MDA-MB-231 cells than against MCF7/ADR or NIH/3T3 cells and better than acommercial liposomal DOX formulation. In conclusion, this study demonstrates that PEVs generated by PLTs using extrusion, freeze/thaw, or sonication can efficiently load DOX and kill breast cancer cells, providing a promising strategy for further evaluation in preclinical animal models. The study findings suggest that sonication and extrusion are the most efficient methods to generate PEVs and that PEVs loaded with DOX exhibit significant anticancer activity against MDA-MB-231 breast cancer cells.


What is the context?● Current synthetic drug delivery systems can have limitations and side effects.● Platelet extracellular vesicles (PEVs) are a natural and potentially safer alternative for delivering cancer drugs to tumors.● However, there is still a lack of understanding about how to produce PEVs and how effective they are in delivering drugs.What is new?● We compared different methods for producing PEVs from clinical-grade platelets and found that sonication and extrusion were the most effective methods.● The PEVs were loaded with a cancer drug called doxorubicin (DOX) and tested their ability to kill breast cancer cells.What is the impact?● PEVs loaded with DOX were effective at killing cancer cells, especially MDA-MB-231 breast cancer cells.● This study demonstrates that PEVs are a promising strategy for delivering cancer drugs to tumors and that sonication and extrusion are the most efficient methods for producing PEVs.● The results suggest that further evaluation of PEVs in preclinical animal models is warranted to determine their potential as a cancer drug delivery system.Abbreviations: ADP: adenosine diphosphate; bFGF: basic fibroblast growth factor; BSA: bovine serum albumin; CD41: platelet glycoprotein IIb; CD62P: P-selectin; CFDASE: 5-(and-6)-carboxyfluorescein diacetate: succinimidyl ester; CPLT: cryopreserved platelet; CPZ: chlorpromazine hydrochloride; CTC: circulating tumor cell; DMSO: dimethyl sulfoxide; DDS: drug delivery system; DOX: doxorubicin; EPR: enhanced permeability and retention; EV: extracellular vesicle; FBS: fetal bovine serum; GMP: good manufacturing practice; GF: growth factor; HER2: human epidermal growth factor receptor 2; HGF: hepatocyte growth factor; Lipo-DOX: liposomal doxorubicin; MDR: multi-drug resistance; MMP-2: matrix metalloproteinase-2; MP: microparticle; MSC: mesenchymal stromal cell; NP: nanoparticle; NTA: nanoparticle tracking analysis; PAR-1: protease activated receptor-1; PAS: platelet additive solution; PBS: phosphate-buffered saline; PC: platelet concentrate; PEG: polyethylene glycol; PEV: platelet-derived extracellular vesicle; DOX-PEV: doxorubicin-loaded platelet-derived extracellular vesicle-encapsulated; PFA: paraformaldehyde; PF4: platelet factor 4; P-gp: P-glycoprotein; PLT: platelet; PS: phosphatidylserine; SDS-PAGE: sodium dodecylsulfate polyacrylamide gel electrophoresis; SEM: scanning electron microscopy; TCIPA: tumor cell-induced PLT aggregation; TDDS: targeted drug delivery system; TEG: thromboelastography; TF: tissue factor; TF-EV: extracellular vesicle expressing tissue factor; TME: tumor microenvironment; TNBC: triple-negative breast cancer; TXA2: thromboxane-A2; VEGF: vascular endothelial growth factor; WHO: World Health Organization.


Asunto(s)
Antineoplásicos , Vesículas Extracelulares , Nanopartículas , Ratones , Animales , Plaquetas , Antineoplásicos/farmacología , Doxorrubicina/farmacología
14.
Plant Cell Rep ; 42(12): 2023-2038, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37819387

RESUMEN

KEY MESSAGE: OsSPL10 is a negative regulator of rice defense against BPH, knockout of OsSPL10 enhances BPH resistance through upregulation of defense-related genes and accumulation of secondary metabolites. Rice (Oryza sativa L.), one of the most important staple foods worldwide, is frequently attacked by various herbivores, including brown planthopper (BPH, Nilaparvata lugens). BPH is a typical monophagous, phloem-sucking herbivore that has been a substantial threat to rice production and global food security. Understanding the regulatory mechanism of defense responses to BPH is essential for improving BPH resistance in rice. In this study, a SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE 10 (OsSPL10) transcription factor was found to play a negative role in the defenses of rice against BPH. To gain insights into the molecular and biochemical mechanisms of OsSPL10, we performed combined analyses of transcriptome and metabolome, and revealed that knockout of OsSPL10 gene improved rice resistance against BPH by enhancing the direct and indirect defenses. Genes involved in plant hormone signal transduction, MAPK signaling pathway, phenylpropanoid biosynthesis, and plant-pathogen interaction pathway were significantly upregulated in spl10 mutant. Moreover, spl10 mutant exhibited increased accumulation of defense-related secondary metabolites in the phenylpropanoid and terpenoid pathways. Our findings reveal a novel role for OsSPL10 gene in regulating the rice defense responses, which can be used as a potential target for genetic improvement of BPH resistance in rice.


Asunto(s)
Hemípteros , Oryza , Animales , Transcriptoma , Oryza/genética , Oryza/metabolismo , Regulación de la Expresión Génica , Metaboloma , Hemípteros/fisiología , Regulación de la Expresión Génica de las Plantas
15.
Altern Ther Health Med ; 29(6): 444-448, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37295014

RESUMEN

Background and Purpose: Chronic thromboembolic pulmonary hypertension (CTEPH) is the fourth most common form of pulmonary hypertension (PH), representing a pre-capillary manifestation of the disorder. This meta-analysis aims to evaluate the role of balloon pulmonary angioplasty (BPA) in the treatment of CTEPH. Methods: Our investigation was conducted using PubMed, Embase, Cochrane Library, and Web of Science platforms. Results: This meta-analysis includes the analysis of seven studies. BPA demonstrated a significant reduction in pulmonary arterial pressure in CTEPH patients (Mean difference (MD) = -9.80, 95% CI: -1.10 to -8.59, P < .00001). BPA also resulted in a decrease in pulmonary vascular resistance in CTEPH patients (MD = -4.70, 95% CI: -7.17 to -2.22, P = .0002). Moreover, BPA was associated with improved 6-minute walk distance of CTEPH patients (MD = 43.86, 95% CI: 26.19 to 61.53, P < .00001). Additionally, BPA led to a reduction in NT-proBNP levels in CTEPH patients (MD = -3.46, 95% CI: -10.63 to 3.71, p-value = 0.34). BPA also resulted in an improvement in the WHO functional class of CTEPH patients, with an increase in class I-II (MD = 0.28, 95% CI: 0.22 to 0.35, P < .00001) and a decrease in class III-IV (MD = 0.16, 95% CI: 0.10 to 0.26, P < .00001). Conclusion: These findings support the effectiveness of BPA as an alternative treatment option for CTEPH patients, leading to improvements in prognostic factors such as hemodynamics, functional ability, and biomarkers. BPA may offer enhanced therapeutic benefits and potentially serve as an alternative treatment for select CTEPH patients.


Asunto(s)
Hipertensión Pulmonar , Humanos , Hipertensión Pulmonar/terapia , Actividades Cotidianas , Caminata , Angioplastia
16.
J Integr Plant Biol ; 65(7): 1636-1650, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36866859

RESUMEN

Abiotic stress is one of the most important factors reducing soybean yield. It is essential to identify regulatory factors contributing to stress responses. A previous study found that the tandem CCCH zinc-finger protein GmZF351 is an oil level regulator. In this study, we discovered that the GmZF351 gene is induced by stress and that the overexpression of GmZF351 confers stress tolerance to transgenic soybean. GmZF351 directly regulates the expression of GmCIPK9 and GmSnRK, leading to stomata closing, by binding to their promoter regions, which carry two CT(G/C)(T/A)AA elements. Stress induction of GmZF351 is mediated through reduction in the H3K27me3 level at the GmZF351 locus. Two JMJ30-demethylase-like genes, GmJMJ30-1 and GmJMJ30-2, are involved in this demethylation process. Overexpression of GmJMJ30-1/2 in transgenic hairy roots enhances GmZF351 expression mediated by histone demethylation and confers stress tolerance to soybean. Yield-related agronomic traits were evaluated in stable GmZF351-transgenic plants under mild drought stress conditions. Our study reveals a new mode of GmJMJ30-GmZF351 action in stress tolerance, in addition to that of GmZF351 in oil accumulation. Manipulation of the components in this pathway is expected to improve soybean traits and adaptation under unfavorable environments.


Asunto(s)
Sequías , Glycine max , Glycine max/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cloruro de Sodio/farmacología , Plantas Modificadas Genéticamente/metabolismo , Estrés Fisiológico , Zinc/metabolismo , Regulación de la Expresión Génica de las Plantas
17.
J Integr Plant Biol ; 65(8): 1983-2000, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37066995

RESUMEN

Seed weight is usually associated with seed size and is one of the important agronomic traits that determine yield. Understanding of seed weight control is limited, especially in soybean plants. Here we show that Glycine max JASMONATE-ZIM DOMAIN 3 (GmJAZ3), a gene identified through gene co-expression network analysis, regulates seed-related traits in soybean. Overexpression of GmJAZ3 promotes seed size/weight and other organ sizes in stable transgenic soybean plants likely by increasing cell proliferation. GmJAZ3 interacted with both G. max RESPONSE REGULATOR 18a (GmRR18a) and GmMYC2a to inhibit their transcriptional activation of cytokinin oxidase gene G. max CYTOKININ OXIDASE 3-4 (GmCKX3-4), which usually affects seed traits. Meanwhile, the GmRR18a binds to the promoter of GmMYC2a and activates GmMYC2a gene expression. In GmJAZ3-overexpressing soybean seeds, the protein contents were increased while the fatty acid contents were reduced compared to those in the control seeds, indicating that the GmJAZ3 affects seed size/weight and compositions. Natural variation in JAZ3 promoter region was further analyzed and Hap3 promoter correlates with higher promoter activity, higher gene expression and higher seed weight. The Hap3 promoter may be selected and fixed during soybean domestication. JAZ3 orthologs from other plants/crops may also control seed size and weight. Taken together, our study reveals a novel molecular module GmJAZ3-GmRR18a/GmMYC2a-GmCKXs for seed size and weight control, providing promising targets during soybean molecular breeding for better seed traits.


Asunto(s)
Glycine max , Semillas , Glycine max/metabolismo , Fenotipo , Semillas/genética , Semillas/metabolismo , Perfilación de la Expresión Génica , Ácidos Grasos/metabolismo
18.
Zhonghua Nan Ke Xue ; 29(6): 557-561, 2023 Jun.
Artículo en Zh | MEDLINE | ID: mdl-38602731

RESUMEN

Circumcision is the simplest, most commonly used and most effective treatment for male prepuce overlength, phimosis and other diseases. There has also been a shift from traditional circumcision to simpler, faster, less invasive, instrument-based methods. This paper reviews the surgical methods of circumcision(Traditional circumcision、Electrosurgical circumcision、Laser circumcision、Sleeve circumcision, Dermotomy at the base of penis, Shangring, Gomco, Mogen, PlastiBell, PrePex, Alisklamp and Disposable circumcision suture apparatus), hoping to provide reference for clinicians to choose the appropriate circumcision methods for patients.


Asunto(s)
Circuncisión Masculina , Fimosis , Humanos , Masculino , Pene , Prepucio , Pelvis , Fimosis/cirugía
19.
Zhonghua Nan Ke Xue ; 29(10): 910-915, 2023 Oct.
Artículo en Zh | MEDLINE | ID: mdl-38639661

RESUMEN

OBJECTIVE: To compare the efficacy and complications of radical surgery (RP) and radical radiotherapy (RRT). METHODS: The clinical data of patients diagnosed with localized prostate cancer in General Hospital of Eastern Theater Command with RP and RRT from January 2015 to December 2019, Observed and recorded patient preoperative and postoperative PSA levels, biochemical Relapse-free Survival and clinical Relapse-free Survival,and the occurrence of hematuria, urinary incontinence, erectile dysfunction, ankylurethria, diarrhea, hemoproctia and radiocystitis. RESULTS: A total of 150 patients with localized prostate cancer were included in this study, including 105 patients with RP and 45 patients undergoing RRT. There was no significant difference between the complication rates of hematuria, urinary incontinence, erectile dysfunction and ankylurethria(P>0.05).Patients in the RRT group had higher rates of diarrhea(20.00% vs 2.86%), hemoproctia(15.56% vs 1.90%) and radiocystitis(13.33% vs 0%) than those in the RP group, with significant differences (P<0.05). The 5-year bRFS was lower than that in the RP group (95.1% vs 90.7%), with no statistical significance (P=0.832); the 5-year cRFS in the RP group was lower than that in the RRT group (91.2% vs 89.6%), with no significant difference (P=0.971). CONCLUSION: The incidence of diarrhea, hemoproctia and radiocystitis was lower in the RP group than in the RRT group, and the recurrence-free survival was not significantly different between the two groups.


Asunto(s)
Disfunción Eréctil , Neoplasias de la Próstata , Incontinencia Urinaria , Masculino , Humanos , Disfunción Eréctil/etiología , Hematuria/etiología , Recurrencia Local de Neoplasia , Neoplasias de la Próstata/radioterapia , Neoplasias de la Próstata/cirugía , Incontinencia Urinaria/etiología , Diarrea/etiología , Diarrea/cirugía , Prostatectomía/efectos adversos , Estudios Retrospectivos
20.
Zhonghua Nan Ke Xue ; 29(7): 615-618, 2023 Jul.
Artículo en Zh | MEDLINE | ID: mdl-38619408

RESUMEN

OBJECTIVE: To analyze the proper time and method for treatment of prostatic abscess (PA). METHODS: This is a retrospective study that included 18 patients diagnosed with and treated for prostatic abscess between February 2017 and July 2022. After obtaining data from the patients' medical records, we analyzed their clinical features as well as the therapeutic methods opted for and their effectiveness. Results: Of the 18 patients included, one achieved a full recovery after a spontaneous rupture of the abscess. Transrectal ultrasound (TRUS)-guided aspiration was performed in the remaining 17 patients, of whom 14 had a complete resolution after this procedure whereas 3 experienced recurrence. The recurrent cases were successfully managed with transurethral (TU) de-roofing. CONCLUSION: TRUS-guided aspiration is a treatment modality with a marked curative effect for simple PAs. For refractory abscesses (recurrent, multifocal, incomplete or unsuccessful drainage) or PA located near the urethra, TU de-roofing can be considered as a first choice to shorten the course of the disease and alleviate the medical treatment expenses due to recurrence.


Asunto(s)
Absceso , Enfermedades de la Próstata , Humanos , Masculino , Absceso/cirugía , Estudios Retrospectivos , Drenaje , Enfermedades de la Próstata/cirugía , Uretra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA