Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Annu Rev Pharmacol Toxicol ; 62: 617-639, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34990202

RESUMEN

Glyphosate (GLYP) is a widely used pesticide; it is considered to be a safe herbicide for animals and humans because it targets 5-enolpyruvylshikimate-3-phosphate synthase. However, there has been increasing evidence that GLYP causes varying degrees of toxicity. Moreover, oxidative stress and metabolism are highly correlated with toxicity. This review provides a comprehensive introduction to the toxicity of GLYP and, for the first time, systematically summarizes the toxicity mechanism of GLYP from the perspective of oxidative stress, including GLYP-mediated oxidative damage, changes in antioxidant status, altered signaling pathways, and the regulation of oxidative stress by exogenous substances. In addition, the metabolism of GLYP is discussed, including metabolites,metabolic pathways, metabolic enzymes, and the toxicity of metabolites. This review provides new ideas for the toxicity mechanism of GLYP and proposes effective strategies for reducing its toxicity.


Asunto(s)
Glicina , Herbicidas , Animales , Antioxidantes , Glicina/análogos & derivados , Glicina/toxicidad , Herbicidas/toxicidad , Humanos , Estrés Oxidativo , Glifosato
2.
BMC Vet Res ; 20(1): 141, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582846

RESUMEN

Glaesserella parasuis, an important respiratory bacterial pathogen, causes Glässer's disease in piglets, with potential immunosuppression. We established a piglet infection model and explored the immunosuppression mechanism to improve our understanding of the host immune response to G. parasuis. Twenty piglets were randomly divided into two groups (n = 10). The infection group was intraperitoneally challenged with 2 × 108 CFU of G. parasuis in 2 mL TSB. The control group was intraperitoneally injected with equivalent TSB. After 72 h, the piglets were sacrificed, and spleen tissue was collected. PD-1/PD-L1 expression was determined. The splenocytes were isolated to detect CD3+ T, CD3+CD4+ T, CD3+CD8+ T and CD3-CD21+cell differentiation. Via data-independent acquisition (DIA), we compared the proteomics of healthy and infected spleen tissues. Glaesserella parasuis modified CD3+ T, CD3+CD4+ T, CD3+CD8+ T and CD3-CD21+ cell differentiation and PD-1/PD-L1 expression in the spleen. The infection group had 596 proteins with significant differences in expression, of which 301 were significantly upregulated and 295 downregulated. Differentially expressed proteins (DEPs) were mainly related to immune responses. This is the first study on PD-1/PD-L1 expression in the spleen associated with immunosuppression in a piglet model to explore the protein changes related to immune responses via DIA.


Asunto(s)
Infecciones por Haemophilus , Haemophilus parasuis , Enfermedades de los Porcinos , Animales , Antígeno B7-H1 , Infecciones por Haemophilus/microbiología , Infecciones por Haemophilus/veterinaria , Terapia de Inmunosupresión/veterinaria , Fosfatidilinositol 3-Quinasas , Receptor de Muerte Celular Programada 1 , Proteínas Proto-Oncogénicas c-akt , Porcinos , Enfermedades de los Porcinos/microbiología , Serina-Treonina Quinasas TOR
3.
Cell Biol Toxicol ; 39(1): 201-216, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-34581912

RESUMEN

Alimentary toxic aleukia (ATA) is correlated with consuming grains contaminated by Fusarium species, particularly T-2 toxin, which causes serious hurt to human and animal health, chiefly in disorders of the haematopoietic system. However, the mechanism of haematopoietic dysfunction induced by T-2 toxin and the possible target pathway for the treatment of T-2 toxin-induced haematopoietic disorder of ATA remains unclear. In this study, genomes and proteomics were used for the first time to investigate the key differential genes and proteins that inhibit erythroid differentiation of K562 cells caused by T-2 toxin, and it was found that heat shock protein 27 (HSP27) and membrane-spanning 4-domains, subfamily A, member 3 (MS4A3) may play an important role in erythroid differentiation. Meanwhile, MS4A3 interference can inhibit the occurrence of erythroid differentiation of K562 cells and promote the phosphorylation of HSP27. Moreover, the binding of HSP27 to MS4A3 in natural state can activate the phosphorylation site of HSP27 (Ser-83), while T-2 toxin can abolish the activation of phosphorylation site by inhibiting the expression of MS4A3. These findings for the first time demonstrated that the MS4A3-HSP27 pathway may function an efficient therapeutic target pathway for treating T-2 toxin elicited haematopoietic disorders of ATA.


Asunto(s)
Proteínas de Choque Térmico HSP27 , Toxina T-2 , Animales , Humanos , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico HSP27/metabolismo , Toxina T-2/toxicidad , Fosforilación , Diferenciación Celular , Células K562 , Proteínas de la Membrana/metabolismo , Proteínas de Ciclo Celular/metabolismo
4.
Ecotoxicol Environ Saf ; 247: 114243, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36332407

RESUMEN

Growth retardation is a global public health problem that is highly prevalent especially in low-and middle-income countries, which is closely related to the consumption of grains contaminated with T-2 toxin, a risk for human and animal health. However, the possible targets that can relieve T-2 toxin-induced growth retardation still need to be explored. In the present study, T-2 toxin was used as an environmental exposure factor to induce growth retardation and further explore the regulatory role of lncRNA in growth retardation. The present study systematically characterised the expression profiles of lncRNAs and identified a lncRNA lncMST that is related to growth retardation in T-2 toxin-administered rats. Functionally, lncMST could alleviate cell cycle arrest and apoptosis in T-2 toxin-treated GH3 cells. Mechanistically, lncMST, serve as an inducible chaperone RNA, involved in the paradigm "Chemical-induced stress related growth retardation", through recruiting the EPRS/HSP90AB1 complex to increase HDAC6 expression, thus further alleviating T-2 toxin-induced growth retardation. These findings for the first time demonstrate that the probable therapeutic relationship between lncMST and growth retardation, providing an explanation and therapeutic targets for the pathogenesis of growth retardation.


Asunto(s)
ARN Largo no Codificante , Toxina T-2 , Humanos , Animales , Ratas , Toxina T-2/toxicidad , ARN Largo no Codificante/genética , Apoptosis , Exposición a Riesgos Ambientales , Trastornos del Crecimiento , Proteínas HSP90 de Choque Térmico/genética
5.
Molecules ; 27(16)2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-36014323

RESUMEN

Glaesserella parasuis (GPS), a causative agent of Glässer's disease, is thought to be the main fatal cause of peritonitis in swine, thus resulting in high mortality and morbidity and significant economic losses to the swine industry. However, the mechanisms of GPS infection-induced apoptosis and possible therapeutic pathway for GPS infection in peritonitis remain unclear. Baicalin has important biological functions during disease treatment, such as antiviral, bacterial inhibition, anti-apoptosis, and anti-inflammatory. However, whether baicalin has anti-apoptotic effects during the process of GPS infection in peritonitis is unclear. In the present study, the anti-apoptotic effect and mechanisms of baicalin in GPS infection-induced apoptosis were investigated in porcine peritoneal mesothelial cells (PPMC). The results showed that baicalin could inhibit the apoptosis rate occurrence of PPMC induced by GPS to various degrees and inhibit the expression of apoptosis-related genes and cleaved caspase-3. Meanwhile, baicalin significantly antagonized the expression of p-JNK, p-p38, and p-ERK induced by GPS in PPMC. These findings for the first time demonstrate that baicalin exerted the effect of antagonizing GPS induced apoptosis in PPMC by inhibiting the activation of the PKC-MAPK pathway and could be a therapeutic option in the management of GPS infection.


Asunto(s)
Haemophilus parasuis , Peritonitis , Enfermedades de los Porcinos , Animales , Flavonoides/farmacología , Flavonoides/uso terapéutico , Peritonitis/tratamiento farmacológico , Porcinos , Enfermedades de los Porcinos/tratamiento farmacológico
6.
Med Res Rev ; 41(3): 1751-1774, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33368430

RESUMEN

Obesity syndromes, characterized by abnormal lipid, cholesterol, and glucose metabolism, are detrimental to human health and cause many diseases, including obesity and type II diabetes. Increasing evidence has shown that long noncoding RNA (lncRNA), transcripts longer than 200 nucleotides that are not translated into proteins, play an important role in regulating abnormal metabolism in obesity syndromes. For the first time, we systematically summarize how lncRNA is involved in complex obesity metabolic syndromes, including the regulation of lipid, cholesterol, and glucose metabolism. Moreover, we discuss lncRNA involvement in food intake that mediates obesity syndromes. Furthermore, this review might shed new light on a lncRNA-based strategy for the prevention and treatment of obesity syndromes. Recent investigations support that lncRNA is a novel molecular target of obesity syndromes and should be emphasized. Namely, lncRNA plays a crucial role in the development of obesity syndrome process. Various lncRNAs are involved in the process of lipid, cholesterol, and glucose metabolism by regulating gene transcription, signaling pathway, and epigenetic modification of metabolism-related genes, proteins, and enzymes. Food intake could also induce abnormal expression of lncRNA associated with obesity syndrome, especially high-fat diet. Notably, some nanomolecules and natural extracts may target lncRNAs, associated with obesity syndrome, as a potential treatment for obesity syndromes.


Asunto(s)
Obesidad , ARN Largo no Codificante , Colesterol/metabolismo , Glucosa/metabolismo , Humanos , Metabolismo de los Lípidos , Obesidad/genética , Obesidad/terapia , ARN Largo no Codificante/genética
7.
J Cell Biochem ; 120(5): 7623-7634, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30417433

RESUMEN

Cyadox, a new derivative of quinoxalines, has been ascertained as an antibiotic with significant growth promoting, low poison, quick absorption, swift elimination, brief residual period, and noncumulative effect. Seven differential expressed genes, including Insulin-like Growth Factor-1 ( IGF-1), Epidermal Growth Factor ( EGF), Poly ADP-ribose polymerase ( PARP), the Defender Against Apoptotic Death 1 ( DAD1), Complement Component 3 ( C3), Transketolase ( TK) and a New gene, were induced by cyadox in swine liver tissues by messenger RNA differential display reverse transcription polymerase chain reaction (DDRT-PCR) in our laboratory. However, the signal mechanism that cyadox altered these genes expression is not completely elucidated. The signaling pathways involved in the expressions of seven genes induced by cyadox were determined in porcine primary hepatocytes by RT-qPCR and the application of various signal pathway inhibitors. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay revealed that cyadox could stimulate proliferation of porcine primary hepatocytes in a time-dependent manner. In porcine primary cultured hepatocytes, phosphoinositide 3-kinase (PI3K) and transforming growth factor-ß (TGF-ß) signal pathways were the main signal pathways involved in the expressions of seven genes induced by cyadox. Taken together, these results demonstrate for the first time that seven cyadox-related genes expressions in porcine primary hepatocytes treated with cyadox are mediated mainly through the PI3K signaling pathway, potentially leading to enhanced cell growth and cell immunity. EGF might be the early response gene of cyadox, and a primary regulator of the other gene expressions such as IGF-1 and DAD1, playing an important role in cell proliferation promoted by cyadox.

8.
Environ Res ; 170: 260-281, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30599291

RESUMEN

Deltamethrin is widely used worldwide due to its valuable insecticidal activity against pests and parasites. Increasing evidence has shown that deltamethrin causes varying degrees of toxicity. Moreover, oxidative stress and metabolism are highly correlated with toxicity. For the first time, this review systematically summarizes the deltamethrin toxicity mechanism from the perspective of oxidative stress, including deltamethrin-mediated oxidative damage, antioxidant status, oxidative signaling pathways and modulatory effects of antagonists, synergists and placebos on oxidative stress. Further, deltamethrin metabolism, including metabolites, metabolic enzymes and pathways and deltamethrin metabolite toxicity are discussed. This review will shed new light on deltamethrin toxicity mechanisms and provide effective strategies to ensure pest control and prevention of human and animal poisoning.


Asunto(s)
Insecticidas/toxicidad , Nitrilos/toxicidad , Piretrinas/toxicidad , Animales , Estrés Oxidativo
9.
PLoS One ; 19(4): e0301902, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38603697

RESUMEN

Spectral collinearity and limited spectral datasets are the problems influencing Chemical Oxygen Demand (COD) modeling. To address the first problem and obtain optimal modeling range, the spectra are preprocessed using six methods including Standard Normal Variate, Savitzky-Golay Smoothing Filtering (SG) etc. Subsequently, the 190-350 nm spectral range is divided into 10 subintervals, and Interval Partial Least Squares (IPLS) is used to perform PLS modeling on each interval. The results indicate that it is best modeled in the 7th range (238~253 nm). The values of Mean Square Error (MSE), Mean Absolute Error (MAE) and R2score of the model without pretreatment are 1.6489, 1.0661, and 0.9942. After pretreatment, the SG is better than others, with MSE and MAE decreasing to 1.4727, 1.0318 and R2score improving to 0.9944. Using the optimal model, the predicted COD for three samples are 10.87 mg/L, 14.88 mg/L, and 19.29 mg/L. To address the problem of the small dataset, using Generative Adversarial Networks for data augmentation, three datasets are obtained for Support Vector Machine (SVM) modeling. The results indicate that, compared to the original dataset, the SVM's MSE and MAE have decreased, while its accuracy has improved by 2.88%, 11.53%, and 11.53%, and the R2score has improved by 18.07%, 17.40%, and 18.74%.


Asunto(s)
Espectroscopía Infrarroja Corta , Máquina de Vectores de Soporte , Espectroscopía Infrarroja Corta/métodos , Análisis de la Demanda Biológica de Oxígeno , Análisis de los Mínimos Cuadrados , Agua , Algoritmos
10.
PLoS One ; 19(3): e0299435, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38498583

RESUMEN

The detection of water quality indicators such as Temperature, pH, Turbidity, Conductivity, and TDS involves five national standard methods. Chemically based measurement techniques may generate liquid residue, causing secondary pollution. The water quality monitoring and data analysis system can effectively address the issues that conventional methods require multiple pieces of equipment and repeated measurements. This paper analyzes the distribution characteristics of the historical data from five sensors at a specific time, displays them graphically in real time, and provides an early warning of exceeding the standard; It selects four water samples from different sections of the Li River, based on the national standard method, the average measurement errors of Temperature, PH, TDS, Conductivity and Turbidity are 0.98%, 2.23%, 2.92%, 3.05% and 3.98%.;It further uses the quartile method to analyze the outlier data over 100,000 records and five historical periods are selected. Experiment results show the system is relatively stable in measuring Temperature, PH and TDS, and the proportion of outlier is 0.42%, 0.84% and 1.24%. When Turbidity and Conductivity are measured, the proportion is 3.11% and 2.92%. In the experiment of using 7 methods to fill outlier, K nearest neighbor algorithm is better than others. The analysis of data trends, outliers, means, and extreme values assists in making decisions, such as updating and maintaining equipment, addressing extreme water quality situations, and enhancing regional water quality oversight.


Asunto(s)
Ríos , Calidad del Agua , Ríos/química , Monitoreo del Ambiente/métodos , Agua Dulce , Análisis por Conglomerados
11.
Mycotoxin Res ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38913091

RESUMEN

Aflatoxin B1 (AFB1) is classified as a Class I carcinogen and common pollutant in human and animal food products. Prolonged exposure to AFB1 can induce hepatocyte apoptosis and lead to hepatotoxicity. Therefore, preventing AFB1-induced hepatotoxicity remains a critical issue and is of great significance. Baicalin, a polyphenolic compound derived from Scutellaria baicalensis Georgi, has a variety of pharmacodynamic activities, such as antiapoptotic and anticancer activities. This study systematically investigated the alleviating effect of baicalin on AFB1-induced hepatotoxicity from the perspective of apoptosis and explored the possible molecular mechanism. In the normal human liver cell line L02, baicalin treatment significantly inhibited AFB1-induced c-Jun-N-terminal Kinase (JNK) activation and cell apoptosis. In addition, the in vitro mechanism study demonstrated that baicalin alleviates AFB1-induced hepatocyte apoptosis through suppressing the translocation of phosphorylated JNK to the nucleus and decreasing the phosphorylated c-Jun/c-Jun ratio and the Bax/Bcl2 ratio. Molecular docking and drug affinity responsive target stability assays demonstrated that baicalin has the potential to target JNK. This study provides a basis for the therapeutic effect of baicalin on hepatocyte apoptosis caused by AFB1, indicating that the development of baicalin and JNK pathway inhibitors has broad application prospects in the prevention of hepatotoxicity, especially hepatocyte apoptosis.

12.
Toxicon ; 237: 107531, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38013056

RESUMEN

Contamination with fumonisin B1 (FB1) represents a global health problem. FB1 exposure may also trigger intestinal injury by activating inflammatory responses, leading to a reduction in production performance and economic benefits. However, the mechanism of FB1-induced intestinal inflammatory injury is still unclear. At the same time, it is urgent to develop antibiotic alternatives and therapeutic targets to alleviate antibiotic resistance and to ensure effective treatment of intestinal inflammatory injury. We combined network pharmacology and in vitro experiments to explore the core therapeutic targets and potential mechanism of luteolin in FB1-induced intestinal inflammatory injury. Network pharmacology and molecular docking revealed that nuclear factor kappa B (NF-κB) p65, extracellular signal-regulated kinase (ERK), interleukin 6 (IL-6) and IL-1ß are the important targets, and the NF-κB and ERK signalling pathways are critical in FB1-induced intestinal inflammatory injury. Besides, in vitro experiments further demonstrated that luteolin can inhibit FB1-induced intestinal inflammatory injury by inhibiting activation of the NF-κB and ERK signalling pathways and reducing the expression of IL-6 and IL-1ß in IPEC-J2 cells. We have comprehensively illustrated the potential targets and molecular mechanism by which luteolin can alleviate FB1-induced intestinal inflammatory injury. Luteolin may be an effective antibiotic alternative to prevent intestinal inflammatory injury.


Asunto(s)
Luteolina , FN-kappa B , FN-kappa B/metabolismo , Luteolina/farmacología , Interleucina-6 , Simulación del Acoplamiento Molecular , Farmacología en Red , Antibacterianos
13.
Toxicon ; 239: 107612, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38211803

RESUMEN

Bacterial lipopolysaccharide (LPS) exposure is a key inducer of intestinal inflammatory injury in weaned piglets, resulting in decreased growth performance of pigs and causing severe economic losses to the swine industry; however, the mechanism of intestinal inflammatory injury is still unclear. Baicalin is one of the main active ingredients extracted from the natural plant Scutellaria baicalensis that has biological functions, including anti-inflammatory activity. The aim of this study is to investigate the effect and mechanism of baicalin intervention on intestinal inflammatory injury caused by bacterial LPS exposure. In the present study, network pharmacology, molecular docking and DARTS results identified that baicalin has the potential to target PARP1, thereby potentially regulating a series of inflammation-related pathways, including the MAPK, NF-κB and Toll-like receptor signalling pathways, which play the role of antagonizing LPS-induced intestinal inflammatory injury. Further application of the LPS-induced IPEC-J2 cell model validated the finding that baicalin could alleviate LPS-induced intestinal inflammatory injury by inhibiting the PARP1-mediated NF-κB and NLRP3 signalling pathway. These findings demonstrate that baicalin can regulate the expression of PARP1 and that PARP1 has the potential to serve as an effective therapeutic target in the LPS-induced intestinal inflammatory injury.


Asunto(s)
Lipopolisacáridos , FN-kappa B , Animales , Porcinos , FN-kappa B/metabolismo , Lipopolisacáridos/toxicidad , Proteína con Dominio Pirina 3 de la Familia NLR , Simulación del Acoplamiento Molecular , Flavonoides/farmacología , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo
14.
Toxicon ; 243: 107709, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38615996

RESUMEN

Deoxynivalenol is a widespread feed contaminant that leads to vomit, which results in serious symptom such as increased intestinal permeability and even intestinal mucosal necrosis. Recent studies have reported the role of quercetin in alleviating deoxynivalenol-induced intestinal injury; however, the mechanisms and targets remain unclear. Thus, we aimed to identify the mechanisms of action by using a combination of network pharmacology and molecular docking. We identified 151 quercetin targets, 235 deoxynivalenol targets and 47 porcine intestinal injury targets by searching compound database and PubMed database, among which there were two common targets. The PPI network showed that the key proteins involved are NQO1 and PPAR-γ. The PPI network showed that the key proteins involved were NQO1 and PPARG. GO analysis found that genes were enriched primarily in response to oxidative stress. The PPI network showed that the key proteins involved are NQO1 and PPAR-γ. The genes are enriched primarily in response to oxidative stress. KEGG analysis showed enrichment of the HIF, reactive oxygen species and other signaling pathways. The molecular docking results indicated key binding activity between NQO1-quercetin and PPAR-γ-quercetin. By using network pharmacology, we have revealed the potential molecular mechanisms by which quercetin alleviates deoxynivalenol-induced porcine intestinal injury, which lays the foundation for the development of drugs to treat deoxynivalenol-induced intestinal injury in pigs.


Asunto(s)
Simulación del Acoplamiento Molecular , Farmacología en Red , PPAR gamma , Quercetina , Tricotecenos , Quercetina/farmacología , Animales , Tricotecenos/toxicidad , Porcinos , PPAR gamma/metabolismo , Estrés Oxidativo/efectos de los fármacos , Intestinos/efectos de los fármacos , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo
15.
J Hazard Mater ; 459: 132262, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37604032

RESUMEN

T-2 toxin is a common environmental pollutant and contaminant in food and animal feed that represents a great challenge to human and animal' health throughout the world. Using natural compounds to prevent the detrimental effects of T-2 toxin represents an attractive strategy. Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) is a critical regulator in various cellular processes. Recently, PGC-1α activation has been reported to confer protection against neurological injuries. We aimed to identify a potent PGC-1α activator from plants as a chemopreventive compound and to demonstrate the efficacy of the compound in attenuating T-2 toxin-induced blood-brain barrier (BBB) toxicity. We identified daucosterol, which binds directly to the 71-74 (-1100 to -1000 bp) position of the second promoter of human PGC-1α by hydrogen bonding. An in vitro and in vivo T-2 toxin induced BBB injury model revealed that this compound can protect against this injury by increasing transepithelial/transendothelial electrical resistance, reducing sodium fluorescein (NaF) infiltration and increasing the expression of tight junction-related proteins (zonula occludens-1 (ZO-1), occludin (OCLN), claudin-5 (CLDN5)) expression. In conclusion, we identified daucosterol as representing a novel of PGC-1α activators and illustrated the mechanism of specific binding site. Furthermore, we have demonstrated the feasibility of using natural compounds targeting PGC-1α as a therapeutic approach to protect humans from environmental insults that may occur daily such as lipopolysaccharide.


Asunto(s)
Toxina T-2 , Humanos , Barrera Hematoencefálica , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética
16.
Food Chem Toxicol ; 182: 114121, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37890761

RESUMEN

Deoxynivalenol (DON) is one of the most prevalent mycotoxins in feed, which causes organ toxicity in animals. Therefore, reducing DON-induced organ toxicity can now be accomplished effectively using protective agents. This review provides an overview of multiple studies on a wide range of protective agents and their molecular mechanisms against DON organ toxicity. Protective agents include plant extracts, yeast products, bacteria, peptides, enzymes, H2, oligosaccharides, amino acids, adsorbents, vitamins and selenium. Among these, biological detoxification of DON using microorganisms to reduce the toxicity of DON without affecting the growth performance of pigs may be the most promising detoxification strategy. This paper also evaluates future developments related to DON detoxification and discusses the detoxification role and application potential of protective agents. This paper provides new perspectives for future research and development of safe and effective feed additives.


Asunto(s)
Micotoxinas , Tricotecenos , Porcinos , Animales , Tricotecenos/metabolismo , Micotoxinas/análisis , Bacterias/metabolismo , Sustancias Protectoras/farmacología , Sustancias Protectoras/metabolismo , Alimentación Animal/análisis , Contaminación de Alimentos/análisis
17.
Toxicology ; 494: 153589, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37419272

RESUMEN

Deoxynivalenol (DON) is one of the most serious mycotoxins that contaminate food and feed, causing hepatocyte death. However, there is still a lack of understanding regarding the new cell death modalities that explain DON-induced hepatocyte toxicity. Ferroptosis is an iron-dependent type of cell death. The aim of this study was to explore the role of ferroptosis in DON-exposed HepG2 cytotoxicity and the antagonistic effect of resveratrol (Res) on its toxicity, and the underlying molecular mechanisms. HepG2 cells were treated with Res (8 µM) or/and DON (0.4 µM) for 12 h. We examined cell viability, cell proliferation, expression of ferroptosis-related genes, levels of lipid peroxidation and Fe(II). The results revealed that DON reduced the expression levels of GPX4, SLC7A11, GCLC, NQO1, and Nrf2 while promoting the expression of TFR1, GSH depletion, accumulation of MDA and total ROS. DON enhanced production of 4-HNE, lipid ROS and Fe(II) overload, resulting in ferroptosis. However, pretreatment with Res reversed these changes, attenuating DON-induced ferroptosis, improving cell viability and cell proliferation. Importantly, Res prevented Erastin and RSL3-induced ferroptosis, suggesting that Res exerted an anti-ferroptosis effect by activating SLC7A11-GSH-GPX4 signaling pathways. In summary, Res ameliorated DON-induced ferroptosis in HepG2 cells. This study provides a new perspective on the mechanism of DON-induced hepatotoxicity formation, and Res may be an effective drug to alleviate DON-induced hepatotoxicity.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Humanos , Células Hep G2 , Resveratrol/farmacología , Especies Reactivas de Oxígeno , Compuestos Ferrosos
18.
Infect Drug Resist ; 16: 4201-4212, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37404255

RESUMEN

Background: At present, the treatment and prevention of Pasteurella multocida infections in pigs mainly rely on antibiotics and vaccines, but inflammatory injury cannot be eliminated. The compound 18ß-glycyrrhetinic acid (GA), a pentacyclic triterpenoid extracted from Glycyrrhiza glabra L. root (liquorice) and with a chemical structure similar to that of steroidal hormones, has become a research focus because of its anti-inflammatory, antiulcer, antimicrobial, antioxidant, immunomodulatory, hepatoprotective and neuroprotective effects, but its potential for the treatment of vascular endothelial inflammatory injury by P. multocida infections has not been evaluated. This study aimed to investigate the effects and mechanisms of GA intervention in the treatment of vascular endothelial inflammatory injury by P. multocida infections. Materials and Methods: Putative targets of GA intervention in the treatment of vascular endothelial inflammatory injury by P. multocida infections were identified using network pharmacological screening and molecular docking simulation. The cell viability of PIEC cells was investigated via the CCK-8 assay. The mechanism of GA intervention in the treatment of vascular endothelial inflammatory injury by P. multocida infections were investigated using cell transfection and western blot. Results: Through network pharmacological screening and molecular docking simulation, this study found that PARP1 may be a core target for GA to exert anti-inflammatory effects. Mechanistically, GA alleviates P. multocida-induced vascular endothelial inflammation by PARP1-mediated NF-κB and HMGB1 signalling suppression. Conclusion: These findings, for the first time, demonstrate the potential therapeutic relationship among GA, PARP1 and inflammatory injury, providing a candidate drug, therapeutic targets and explanation for treating vascular endothelial inflammatory injury caused by P. multocida infection.

19.
Food Chem Toxicol ; 152: 112183, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33836209

RESUMEN

T-2 toxin, the most virulent toxin produced by the Fusarium genus, is thought to be the main cause of fatal cardiomyopathy known as Keshan disease. However, the mechanisms of T-2 toxin-induced cardiac toxicity and possible targets for its treatment remain unclear. In the present study, male Wistar rats were administered with 2 mg/kg b. w. T-2 toxin (i.g.) and sacrificed on day 7 after exposure. The hematological indices (CK, LDH) and electrocardiogram were significantly abnormal, the ultrastructure of mitochondria in the heart was changed, and the percentage of collagen area was significantly increased in the T-2 toxin-treated group. Meanwhile, T-2 toxin activated the TGF-ß1/Smad2/3 signalling pathway, and also activated PPAR-γ expression in rats and H9C2 cells. Further application of PPAR-γ agonist (pioglitazone) and antagonist (GW9662) in H9C2 cells revealed that the up-regulation of PPAR-γ expression induced by T-2 toxin is a self-preservation phenomenon, and increasing exogenous PPAR-γ can alleviate the increase in TGF-ß1 caused by T-2 toxin, thereby playing a role in relieving cardiac fibrosis. These findings for the first time demonstrate that T-2 toxin can regulate the expression of PPAR-γ and that PPAR-γ has the potential to serve as an effective therapeutic target in T-2 toxin-induced cardiac fibrosis of rats.


Asunto(s)
Cardiomiopatías/metabolismo , Fibrosis/metabolismo , PPAR gamma/metabolismo , Toxina T-2/toxicidad , Anilidas/farmacología , Animales , Cardiomiopatías/inducido químicamente , Cardiomiopatías/complicaciones , Cardiomiopatías/patología , Línea Celular , Colágeno/metabolismo , Fibrosis/inducido químicamente , Fibrosis/complicaciones , Fibrosis/patología , Masculino , Miocardio/metabolismo , Miocardio/patología , PPAR gamma/agonistas , PPAR gamma/antagonistas & inhibidores , Pioglitazona/farmacología , Ratas Wistar , Transducción de Señal/efectos de los fármacos , Factor de Crecimiento Transformador beta1/metabolismo , Regulación hacia Arriba/efectos de los fármacos
20.
Eur J Med Chem ; 223: 113657, 2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34217060

RESUMEN

As a continuation of our research on antimycobacterial agents, a series of novel quinoxaline-1,4-di-N-oxides (QdNOs) containing various nitrogenous heterocyclic moieties at the R6 position were designed and synthesized. Antimycobacterial activities, as well as the cytotoxic effects, of the compounds were assayed. Four compounds (6b, 6f, 6n, and 6o), characterized by 2-carboxylate ethyl or benzyl ester, 6-imidazolyl or 1,2,4-triazolyl, and a 7-fluorine group, exhibited the most potent antimycobacterial activity against M.tb strain H37Rv (MIC ≤ 0.25 µg/mL) with low toxicity in VERO cells (SI = 169.3-412.1). Compound 6o also exhibited excellent antimycobacterial activity in an M.tb-infected macrophage model and was selected for further exploration of the mode of antimycobacterial action of QdNOs. The results showed that compound 6o was capable of disrupting membrane integrity and disturbing energy homeostasis in M.tb. Furthermore, compound 6o noticeably increased cellular ROS levels and, subsequently, induced autophagy in M.tb-infected macrophages, possibly indicating the pathways of QdNOs-mediated inhibition of intracellular M.tb replication. The in vivo pharmacokinetic (PK) profiles indicated that compounds 6o was acceptably safe and possesses favorable PK properties. Altogether, these findings suggest that compound 6o is a promising antimycobacterial candidate for further research.


Asunto(s)
Antituberculosos/farmacología , Autofagia/efectos de los fármacos , Macrófagos/microbiología , Mycobacterium tuberculosis/efectos de los fármacos , Quinoxalinas/química , Animales , Antituberculosos/química , Antituberculosos/farmacocinética , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Evaluación Preclínica de Medicamentos , Semivida , Pruebas de Sensibilidad Microbiana , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mycobacterium tuberculosis/fisiología , Óxidos/química , Quinoxalinas/farmacocinética , Quinoxalinas/farmacología , Ratas , Especies Reactivas de Oxígeno/metabolismo , Relación Estructura-Actividad , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA