Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1602-1610, 2024 Mar.
Artículo en Zh | MEDLINE | ID: mdl-38621945

RESUMEN

This study explored the mechanism of the ultrafiltration extract of Angelicae Sinensis Radix and Hedysari Radix in ameliorating renal fibrosis in the rat model of diabetic kidney disease(DKD) based on the expression of hypoxia-inducible factor-1α(HIF-1α)/vascular endothelial growth factor(VEGF) and HIF-1α/platelet-derived growth factor(PDGF)/platelet-derived growth factor receptor(PDGFR) signaling pathways in the DKD rats. After 1 week of adaptive feeding, 50 male SPF-grade Wistar rats were randomized into a blank group(n=7) and a modeling group. After 24 h of fasting, the rats in the modeling group were subjected to intraperitoneal injection of streptozocin and fed with a high-sugar and high-fat diet to establish a DKD model. After modeling, the rats were randomly assigned into model(n=7), low-dose ultrafiltration extract(n=7), medium-dose ultrafiltration extract(n=7), irbesartan(n=8), and high-dose ultrafiltration extract(n=8) groups. After intervention by corresponding drugs for 12 weeks, the general conditions of the rats were observed. The body weights and blood glucose levels of the rats were measured weekly, and the 24 h urinary protein(24hUP) was measured at the 6th and 12th weeks of drug administration. After the last drug administration, the renal function indicators were determined. Masson staining was employed to observe the pathological changes of the renal tissue. The expression of prolyl hydroxylase domain 2(PHD2) and HIF-1α in the renal tissue was detected by immunohistochemistry(IHC). Real-time qPCR was employed to determine the mRNA levels of PHD2, VEGF, PDGF, and PDGFR in the renal tissue. Western blot was employed to determine the protein levels of HIF-1α, VEGF, PDGF, and PDGFR in the renal tissue. The results showed that compared with the model group, drug administration lowered the levels of glycosylated serum protein(GSP), aerum creatinine(Scr), and blood urea nitrogen(BUN) in a dose-dependent manner(P<0.05 or P<0.01) and mitigated the pathological changes in the renal tissue. Furthermore, drug administration up-regulated mRNA level of PHD2(P<0.05 or P<0.01), down-regulated the mRNA levels of VEGF, PDGF, and PDGFR(P<0.05 or P<0.01) and the protein levels of HIF-1α, VEGF, PDGF, and PDGFR(P<0.01) in the renal tissue, and increased the rate of PHD2-positive cells(P<0.01). In conclusion, the ultrafiltration extract of Angelicae Sinensis Radix and Hedysari Radix effectively alleviated the renal fibrosis in DKD rats by inhibiting the expression of key proteins in the HIF-1α signaling pathway mediated by renal hypoxia and reducing extracellular matrix(ECM) deposition.


Asunto(s)
Nefropatías Diabéticas , Factor A de Crecimiento Endotelial Vascular , Ratas , Masculino , Animales , Ratas Wistar , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Ultrafiltración , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Isquemia , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/genética , Fibrosis , Hipoxia , Transducción de Señal , ARN Mensajero/metabolismo
2.
Phys Chem Chem Phys ; 25(4): 3544, 2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36636943

RESUMEN

Correction for 'Rich magnetic phase transitions and completely dual-spin polarization of zigzag PC3 nanoribbons under uniaxial strain' by Hui-Min Ni et al., Phys. Chem. Chem. Phys., 2023, https://doi.org/10.1039/d2cp05066h.

3.
Phys Chem Chem Phys ; 25(3): 2342-2348, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36597962

RESUMEN

Among many modulation methods, strain engineering is often chosen for nanomaterials to produce tunable band gaps continuously. Inspired by the recently reported two-dimensional material PC3, we explore the tuning of strain on the spin-dependent transport properties of PC3 nanoribbons using the first-principle approach. Surprisingly, strain regulation achieves uninterrupted completely dual-spin polarization over a wide energy range near EF. Analysis reveals that the peculiar transmission spectra arise from the interesting evolution of the band structure, in which strain induces bands to shift and broaden/flatten. This results in triggering the transition of PC3NRs from bandgap-tunable bipolar magnetic semiconductors to spin-gapless semiconductors to ferromagnetic metals or half-metal magnets. Their unique performance demonstrates great potential in spintronics, and our study is expected to provide ideas and theoretical support for the design and application of novel PC3-based spintronic devices in the future.

4.
J Chem Phys ; 158(20)2023 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-37212402

RESUMEN

The unique edge states of the zigzag ß-SiC7 nanoribbons aroused our attention, and therefore, based on first-principles calculations, we investigated their spin-dependent electronic transport properties by constructing controllable defects to modulate these special edge states. Interestingly, by introducing rectangular edge defects in the SiSi and SiC edge-terminated systems, not only the spin-unpolarized is successfully converted to completely spin-polarized, but also the direction of polarization can be switched, thus enabling a dual spin filter. The analyses further reveal that the two transmission channels with opposite spins are spatially separated and that the transmission eigenstates are highly concentrated at the relative edges. The specific edge defect introduced only suppresses the transmission channel at the same edge but reserves the transmission channel at the other edge. In addition, for the CSi and CC edge-terminated systems, an additional spin-down band exists due to spin splitting in the spin-up band at EF, so that besides the original spatially separated two spin-opposite channels, an extra spin channel is distributed at the upper edge, resulting in unidirectional fully spin-polarized transport. The peculiar spatially separated edge states and excellent spin filtering properties could open up further possibilities for ß-SiC7-based electronic devices in spintronics applications.

5.
Phys Chem Chem Phys ; 24(41): 25656-25662, 2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36255329

RESUMEN

Compared with traditional magnetic approaches, electrical modulation of spin-polarized current can greatly reduce the energy consumption and scale of nanodevices and improve their operating speed, which has become a promising research field in spintronics. Motivated by the latest reported novel two-dimensional material ß-SiC7, we employ first-principles calculations to investigate its spin-dependent electron transport with diverse edge configurations. By introducing a gate voltage, the three-terminal device can not only switch between spin-unpolarized and fully spin-polarized states, but also easily change the polarization direction, behaving as an excellent electrically modulated reversible dual-spin filter. Surprisingly, an arbitrary proportion of spin-up and spin-down electron numbers is achieved, enabling precise control of spin polarization. Analysis reveals that it is attributed to the peculiar transmission spectrum, where two broad peaks with opposite spins are located around the Fermi level and respond differently to gate voltage. They belong to the spatially separated edge states originating from the p orbitals of the edge atoms. This feature is robust to different edge configurations of ß-SiC7 nanoribbons, indicating that this may be an intrinsic property of such systems, showing great potential for applications.

6.
Oxid Med Cell Longev ; 2022: 6029445, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35873794

RESUMEN

Ischemic stroke (IS) remains a global public health burden and requires novel strategies. Hypothermia plays a beneficial role in central nervous system diseases. However, the role of hypothermia in IS has not yet been elucidated. In this study, we determined the role of hypothermia in IS and explored its underlying mechanisms. The IS phenotype was detected based on infarct size, infarct volume, and brain edema in mice. Neuroinflammation was evaluated by the activation of microglial cells and the expression of inflammatory genes after ischemia/reperfusion (I/R) and oxygen-glucose deprivation/reperfusion (OGD/R). Neuronal cell apoptosis, cleaved caspase-3 and Bax/Bcl-2 expressions, cell viability, and lactate dehydrogenase (LDH) release were detected after I/R and OGD/R. Blood-brain barrier (BBB) permeability was calculated based on Evans blue extravasation, tight junction protein expression, cell viability, and LDH release after I/R and OGD/R. The expression of peroxisome proliferator-activated receptor gamma (PPARγ) was assessed after OGD/R. Our results suggested that hypothermia significantly reduced infarct size, brain edema, and neuroinflammation after I/R. Hypothermia increased PPARγ expression in microglial cells after OGD/R. Mechanistic studies revealed that hypothermia was a protectant against IS, including attenuated apoptosis of neuronal cells and BBB disruption after I/R and OGD/R, by upregulating PPARγ expression. The hypothermic effect was reversed by GW9662, a PPARγ inhibitor. Our data showed that hypothermia may reduce microglial cell-mediated neuroinflammation by upregulating PPARγ expression in microglial cells. Targeting hypothermia may be a feasible approach for IS treatment.


Asunto(s)
Edema Encefálico , Hipotermia , Accidente Cerebrovascular Isquémico , Daño por Reperfusión , Accidente Cerebrovascular , Animales , Apoptosis , Glucosa/metabolismo , Infarto , Ratones , PPAR gamma/metabolismo , Peroxisomas/metabolismo , Daño por Reperfusión/metabolismo , Daño por Reperfusión/prevención & control
7.
BMJ Open Respir Res ; 8(1)2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34376402

RESUMEN

BACKGROUND: Chest radiograph (CXR) is a basic diagnostic test in community-acquired pneumonia (CAP) with prognostic value. We developed a CXR-based artificial intelligence (AI) model (CAP AI predictive Engine: CAPE) and prospectively evaluated its discrimination for 30-day mortality. METHODS: Deep-learning model using convolutional neural network (CNN) was trained with a retrospective cohort of 2235 CXRs from 1966 unique adult patients admitted for CAP from 1 January 2019 to 31 December 2019. A single-centre prospective cohort between 11 May 2020 and 15 June 2020 was analysed for model performance. CAPE mortality risk score based on CNN analysis of the first CXR performed for CAP was used to determine the area under the receiver operating characteristic curve (AUC) for 30-day mortality. RESULTS: 315 inpatient episodes for CAP occurred, with 30-day mortality of 19.4% (n=61/315). Non-survivors were older than survivors (mean (SD)age, 80.4 (10.3) vs 69.2 (18.7)); more likely to have dementia (n=27/61 vs n=58/254) and malignancies (n=16/61 vs n=18/254); demonstrate higher serum C reactive protein (mean (SD), 109 mg/L (98.6) vs 59.3 mg/L (69.7)) and serum procalcitonin (mean (SD), 11.3 (27.8) µg/L vs 1.4 (5.9) µg/L). The AUC for CAPE mortality risk score for 30-day mortality was 0.79 (95% CI 0.73 to 0.85, p<0.001); Pneumonia Severity Index (PSI) 0.80 (95% CI 0.74 to 0.86, p<0.001); Confusion of new onset, blood Urea nitrogen, Respiratory rate, Blood pressure, 65 (CURB-65) score 0.76 (95% CI 0.70 to 0.81, p<0.001), respectively. CAPE combined with CURB-65 model has an AUC of 0.83 (95% CI 0.77 to 0.88, p<0.001). The best performing model was CAPE incorporated with PSI, with an AUC of 0.84 (95% CI 0.79 to 0.89, p<0.001). CONCLUSION: CXR-based CAPE mortality risk score was comparable to traditional pneumonia severity scores and improved its discrimination when combined.


Asunto(s)
Infecciones Comunitarias Adquiridas , Neumonía , Adulto , Anciano de 80 o más Años , Inteligencia Artificial , Infecciones Comunitarias Adquiridas/diagnóstico por imagen , Humanos , Neumonía/diagnóstico por imagen , Estudios Prospectivos , Estudios Retrospectivos
9.
J Geriatr Cardiol ; 12(6): 655-61, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26788043

RESUMEN

BACKGROUND: Biomarker-assisted diagnosis of acute aortic dissection (AAD) is important for diagnosis and treatment. However, identification of biomarkers for AAD in blood is a challenging task. The aim of this study is to search for new potentially microRNA (miRNAs) biomarkers in AAD. METHODS: The miRNAs expression profiles in ascending aortic tissue and plasma were examined by microarray analysis in two sets or groups. The tissue group was composed of four patients with AAD and four controls of healthy male organ donors. The plasma group included 20 patients with AAD and 20 controls without cardiovascular disease. Bioinformatics was used to analyze the potential targets of the differentially expressed miRNAs. RESULTS: Our study revealed that in AAD patients, the aortic tissue had 30 differentially expressed miRNAs with 13 up-regulated and 17 down-regulated, and plasma had 93 differentially expressed miRNAs, of which 33 were up-regulated and 60 were down-regulated. Four miRNAs were found to be up-regulated in both aortic tissue and plasma in AAD patients. The predicted miRNA targets indicated the four dysregulated miRNAs mainly targeted genes that were associated with cell-cell adhesion, extracellular matrix metabolism, cytoskeleton organization, inflammation, and multiple signaling pathways related to cellular cycles. CONCLUSIONS: Four miRNAs, which are up-regulated both in aortic tissue and in plasma in AAD patients, have been identified in this study. These miRNAs might be potential diagnostic biomarkers for AAD. Larger sample investigations are needed for further verification.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA