Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Plant Cell ; 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38723594

RESUMEN

Grain size and weight are crucial yield-related traits in rice (Oryza sativa). Although certain key genes associated with rice grain size and weight have been successfully cloned, the molecular mechanisms underlying grain size and weight regulation remain elusive. Here, we identified a molecular pathway regulating grain size and weight in rice involving the MPS ONE BINDER KINASE ACTIVATOR-LIKE 1A-SERINE/THREONINE-PROTEIN KINASE 38-CYCLIN C (OsMOB1A-OsSTK38-OsCycC) module. OsSTK38 is a nuclear Dbf2-related kinase that positively regulates grain size and weight by coordinating cell proliferation and expansion in the spikelet hull. OsMOB1A interacts with and enhances the autophosphorylation of OsSTK38. Specifically, the critical role of the OsSTK38 S322 site in its kinase activity is highlighted. Furthermore, OsCycC, a component of the Mediator complex, was identified as a substrate of OsSTK38, with enhancement by OsMOB1A. Notably, OsSTK38 phosphorylates the T33 site of OsCycC. The phosphorylation of OsCycC by OsSTK38 influenced its interaction with the transcription factor KNOTTED-LIKE HOMEOBOX OF ARABIDOPSIS THALIANA 7 (OsKNAT7). Genetic analysis confirmed that OsMOB1A, OsSTK38 and OsCycC function in a common pathway to regulate grain size and weight. Taken together, our findings revealed a connection between the Hippo signalling pathway and the Cyclin-Dependent Kinase (CDK) module in eukaryotes. Moreover, they provide insights into the molecular mechanisms linked to yield-related traits and propose innovative breeding strategies for high-yielding varieties.

2.
Plant Cell ; 35(8): 2848-2870, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37154077

RESUMEN

C3 and C4 grasses directly and indirectly provide the vast majority of calories to the human diet, yet our understanding of the molecular mechanisms driving photosynthetic productivity in grasses is largely unexplored. Ground meristem cells divide to form mesophyll or vascular initial cells early in leaf development in C3 and C4 grasses. Here we define a genetic circuit composed of SHORT ROOT (SHR), INDETERMINATE DOMAIN (IDD), and PIN-FORMED (PIN) family members that specifies vascular identify and ground cell proliferation in leaves of both C3 and C4 grasses. Ectopic expression and loss-of-function mutant studies of SHR paralogs in the C3 plant Oryza sativa (rice) and the C4 plant Setaria viridis (green millet) revealed the roles of these genes in both minor vein formation and ground cell differentiation. Genetic and in vitro studies further suggested that SHR regulates this process through its interactions with IDD12 and 13. We also revealed direct interactions of these IDD proteins with a putative regulatory element within the auxin transporter gene PIN5c. Collectively, these findings indicate that a SHR-IDD regulatory circuit mediates auxin transport by negatively regulating PIN expression to modulate minor vein patterning in the grasses.


Asunto(s)
Oryza , Setaria (Planta) , Humanos , Oryza/genética , Oryza/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Ácidos Indolacéticos/metabolismo , Setaria (Planta)/metabolismo , Diferenciación Celular , Regulación de la Expresión Génica de las Plantas/genética
3.
Plant J ; 109(3): 523-540, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34750914

RESUMEN

The translocation of photosynthate carbohydrates, such as sucrose, is critical for plant growth and crop yield. Previous studies have revealed that sugar transporters, plasmodesmata and sieve plates act as important controllers in sucrose loading into and unloading from phloem in the vascular system. However, other pivotal steps for the regulation of sucrose movement remain largely elusive. In this study, characterization of two starch excesses in mesophyll (sem) mutants and dye and sucrose export assays were performed to provide insights into the regulatory networks that drive source-sink relations in rice. Map-based cloning identified two allelic mutations in a gene encoding a GLUCAN SYNTHASE-LIKE (GSL) protein, thus indicating a role for SEM1 in callose biosynthesis. Subcellular localization in rice showed that SEM1 localized to the plasma membrane. In situ expression analysis and GUS staining showed that SEM1 was mainly expressed in vascular phloem cells. Reduced sucrose transport was found in the sem1-1/1-2 mutant, which led to excessive starch accumulation in source leaves and inhibited photosynthesis. Paraffin section and transmission electron microscopy experiments revealed that less-developed vascular cells (VCs) in sem1-1/1-2 potentially disturbed sugar movement. Moreover, dye and sugar trafficking experiments revealed that aberrant VC development was the main reason for the pleiotropic phenotype of sem1-1/1-2. In total, efficient sucrose loading into the phloem benefits from an optional number of VCs with a large vacuole that could act as a buffer holding tank for sucrose passing from the vascular bundle sheath.


Asunto(s)
Transporte Biológico/genética , Células del Mesófilo/metabolismo , Oryza/genética , Oryza/fisiología , Floema/metabolismo , Almidón/genética , Almidón/metabolismo , Azúcares/metabolismo , Transporte Biológico/fisiología , Productos Agrícolas/genética , Productos Agrícolas/fisiología , Regulación de la Expresión Génica de las Plantas , Genes de Plantas
4.
Plant J ; 109(3): 675-692, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34783109

RESUMEN

C4 plants partition photosynthesis enzymes between the bundle sheath (BS) and the mesophyll (M) cells for the better delivery of CO2 to RuBisCO and to reduce photorespiration. To better understand how C4 photosynthesis is regulated at the transcriptional level, we performed RNA-seq, ATAC-seq, ChIP-seq and Bisulfite-seq (BS-seq) on BS and M cells isolated from maize leaves. By integrating differentially expressed genes with chromatin features, we found that chromatin accessibility coordinates with epigenetic features, especially H3K27me3 modification and CHH methylation, to regulate cell type-preferentially enriched gene expression. Not only the chromatin-accessible regions (ACRs) proximal to the genes (pACRs) but also the distal ACRs (dACRs) are determinants of cell type-preferentially enriched expression. We further identified cell type-preferentially enriched motifs, e.g. AAAG for BS cells and TGACC/T for M cells, and determined their corresponding transcription factors: DOFs and WRKYs. The complex interaction between cis and trans factors in the preferential expression of C4 genes was also observed. Interestingly, cell type-preferentially enriched gene expression can be fine-tuned by the coordination of multiple chromatin features. Such coordination may be critical in ensuring the cell type-specific function of key C4 genes. Based on the observed cell type-preferentially enriched expression pattern and coordinated chromatin features, we predicted a set of functionally unknown genes, e.g. Zm00001d042050 and Zm00001d040659, to be potential key C4 genes. Our findings provide deep insight into the architectures associated with C4 gene expression and could serve as a valuable resource to further identify the regulatory mechanisms present in C4 species.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Cromatina/genética , Cromatina/metabolismo , Células del Mesófilo/metabolismo , Zea mays/crecimiento & desarrollo , Zea mays/genética , Productos Agrícolas/genética , Productos Agrícolas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Fotosíntesis , Células Vegetales
5.
New Phytol ; 240(3): 1066-1081, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37574840

RESUMEN

Modifications of plant architecture can increase planting density, regulate photosynthesis, and improve crop yields. Many basic helix-loop-helix (bHLH) transcription factors participate in the brassinosteroid (BR) signaling pathway and are critical for plant architecture morphogenesis in rice. However, the number of identified bHLH genes suitable for improving production value is still limited. In this study, we cloned Lam1, encoding the typical bHLH transcription factor OsbHLH92. OsbHLH92 knockout (KO) lines exhibit erect leaves. Decreases in the number and size of parenchyma cell layers on the adaxial side of the lamina joint in KO lines were the main reason for the decreased leaf angle. Genetic experiments verify that OsBU1 and its homologs are downstream of OsbHLH92, which is involved in the noncanonical RGA1-mediated BR signaling pathway. OsbHLH91, an OsbHLH92 homolog, plays both conserved and differentiated roles relative to OsbHLH92. Notably, OsbHLH92-KO lines show erect leaves without the acquisition of adverse agronomic traits. Moreover, by driving a specific panicle promoter, OsbHLH92 can greatly increase productivity by at least 10%. This study identifies new components of the BR signaling pathway, demonstrates the importance of OsbHLH92 in improving planting density and crop productivity, and broadens our knowledge of typical and atypical bHLH family members in rice.

6.
Plant Cell Environ ; 46(2): 363-378, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36444099

RESUMEN

Photosynthesis is a process that uses solar energy to fix CO2 in the air and converts it into sugar, and ultimately powers almost all life activities on the earth. C3 photosynthesis is the most common form of photosynthesis in crops. Current efforts of increasing crop yields in response to growing global food requirement are mostly focused on improving C3 photosynthesis. In this review, we summarized the strategies of C3 photosynthesis improvement in terms of Rubisco properties and photorespiratory limitation. Potential engineered targets include Rubisco subunits and their catalytic sites, Rubisco assembly chaperones, and Rubisco activase. In addition, we reviewed multiple photorespiratory bypasses built by strategies of synthetic biology to reduce the release of CO2 and ammonia and minimize energy consumption by photorespiration. The potential strategies are suggested to enhance C3 photosynthesis and boost crop production.


Asunto(s)
Fenómenos Bioquímicos , Ribulosa-Bifosfato Carboxilasa , Ribulosa-Bifosfato Carboxilasa/metabolismo , Dióxido de Carbono , Fotosíntesis/fisiología , Productos Agrícolas/fisiología
7.
Plant Biotechnol J ; 18(12): 2559-2572, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32559019

RESUMEN

The morphology of bulliform cells located on the upper epidermis of leaves is one of the most important cell structures affecting leaf shape. Although many mechanisms regulating the development of bulliform cells have been reported, the fine regulatory mechanisms governing this process have rarely been described. To identify novel components regulating rice leaf morphology, a mutant showing a constitutively rolling phenotype from the seedling stage to flowering, known as crm1-D, was selected for further analysis. Anatomical analyses in crm1-D were attributable to the size reduction of bulliform cells. The crm1-D was controlled by a single dominant nuclear gene. Map-based cloning revealed that Roc8, an HD zipper class IV family member, was responsible for the crm1-D phenotype. Notably, the 50-bp sequence in the 3'-untranslated region (3'-UTR) of the Roc8 gene represses Roc8 at the translational level. Moreover, the roc8 knockdown lines notably increased the size of bulliform cells. A series of assays revealed that Roc8 negatively regulates the size of bulliform cells. Unexpectedly, Roc8 was also observed to positively mediate lignin biosynthesis without incurring a production penalty. The above results show that Roc8 may have a practical application in cultivating materials with high photosynthetic efficiency and low lignin content.


Asunto(s)
Oryza , Regulación de la Expresión Génica de las Plantas/genética , Lignina , Oryza/genética , Oryza/metabolismo , Fenotipo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
Plant Cell ; 29(2): 292-309, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28100707

RESUMEN

Brassinosteroids (BRs) are plant-specific steroid hormones that control plant growth and development. Recent studies have identified key components of the BR signaling pathway in Arabidopsis thaliana and in rice (Oryza sativa); however, the mechanism of BR signaling in rice, especially downstream of GSK3/SHAGGY-like kinase (GSK2), remains unclear. Here, we identified a BR-insensitive rice mutant, reduced leaf angle1 (rla1), and cloned the corresponding gene. RLA1 was identical to the previously reported SMALL ORGAN SIZE1 (SMOS1), which was cloned from another allele. RLA1/SMOS1 encodes a transcription factor with an APETALA2 DNA binding domain. Genetic analysis indicated that RLA1/SMOS1 functions as a positive regulator in the BR signaling pathway and is required for the function of BRASSINAZOLE-RESISTANT1 (OsBZR1). In addition, RLA1/SMOS1 can interact with OsBZR1 to enhance its transcriptional activity. GSK2 can interact with and phosphorylate RLA1/SMOS1 to reduce its stability. These results demonstrate that RLA1/SMOS1 acts as an integrator of the transcriptional complex directly downstream of GSK2 and plays an essential role in BR signaling and plant development in rice.


Asunto(s)
Brasinoesteroides/metabolismo , Oryza/metabolismo , Proteínas de Plantas/fisiología , Factores de Transcripción/fisiología , Sitios de Unión , Clonación Molecular , Regulación de la Expresión Génica de las Plantas , Prueba de Complementación Genética , Oryza/genética , Oryza/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
PLoS Genet ; 13(3): e1006649, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28264034

RESUMEN

Lignocellulosic biomass can be a significant source of renewable clean energy with continued improvement in biomass yield and bioconversion strategies. In higher plants, the leaf blade is the central energy convertor where solar energy and CO2 are assimilated to make the building blocks for biomass production. Here we report that introducing the leaf blade development regulator STENOFOLIA (STF), a WOX family transcription factor, into the biofuel crop switchgrass, significantly improves both biomass yield and sugar release. We found that STF overexpressing switchgrass plants produced approximately 2-fold more dry biomass and release approximately 1.8-fold more solubilized sugars without pretreatment compared to controls. The biomass increase was attributed mainly to increased leaf width and stem thickness, which was also consistent in STF transgenic rice and Brachypodium, and appeared to be caused by enhanced cell proliferation. STF directly binds to multiple regions in the promoters of some cytokinin oxidase/dehydrogenase (CKX) genes and represses their expression in all three transgenic grasses. This repression was accompanied by a significant increase in active cytokinin content in transgenic rice leaves, suggesting that the increase in biomass productivity and sugar release could at least in part be associated with improved cytokinin levels caused by repression of cytokinin degrading enzymes. Our study provides a new tool for improving biomass feedstock yield in bioenergy crops, and uncovers a novel mechanistic insight in the function of STF, which may also apply to other repressive WOX genes that are master regulators of several key plant developmental programs.


Asunto(s)
Citocininas/genética , Medicago truncatula/genética , Panicum/genética , Proteínas de Plantas/genética , Factores de Transcripción/genética , Biocombustibles , Biomasa , Brachypodium/genética , Brachypodium/metabolismo , Metabolismo de los Hidratos de Carbono , Proliferación Celular , Inmunoprecipitación de Cromatina , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Citocininas/metabolismo , ADN de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Proteínas Fluorescentes Verdes/metabolismo , Homeostasis , Análisis de Secuencia por Matrices de Oligonucleótidos , Oryza/genética , Oryza/metabolismo , Oxidorreductasas/genética , Panicum/metabolismo , Fenotipo , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Factores de Transcripción/metabolismo , Transgenes
10.
New Phytol ; 221(2): 834-849, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30295937

RESUMEN

Low temperature stress hinders plant growth and chloroplast development and can limit the geographic range of cultivars. In rice, japonica cultivars have greater chilling tolerance than indica cultivars, but the molecular mechanism underlying chilling tolerance is unclear. Here, we report an RNA-binding protein, DUA1, cloned from the indica cultivar Dular, which exhibits a deficiency in chloroplast development at an early stage of development under low-temperature conditions. DUA1 shares high sequence homology with the pentatricopeptide repeat family and functions in plastid RNA editing under low-temperature conditions. Our data suggest that DUA1 can bind to the plastid-encoded rps8-182 transcript and disruption of DUA1 activity impairs editing. The RNA editing cofactor WSP1, a partner of DUA1, also participates in chloroplast development at low temperature. Western blot analysis indicates that WSP1 enhances DUA1 stability under low temperatures. DUA1 sequence analyses of rice core germplasm revealed that three major haplotypes of DUA1 and one haplotype showed substantial differences in chlorophyll content under low-temperature conditions. Variation at DUA1 may play an important role in the adaptation of rice to different growing regions.


Asunto(s)
Oryza/genética , Edición de ARN , Proteínas de Unión al ARN/metabolismo , Adaptación Fisiológica , Clorofila/metabolismo , Cloroplastos/fisiología , Cloroplastos/ultraestructura , Frío , Regulación de la Expresión Génica de las Plantas , Oryza/fisiología , Oryza/ultraestructura , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , ARN de Planta/genética , Proteínas de Unión al ARN/genética
11.
New Phytol ; 221(1): 326-340, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30151833

RESUMEN

Cell pattern formation in plant leaves has attracted much attention from both plant biologists and breeders. However, in rice, the molecular mechanism remains unclear. Here, we describe the isolation and functional characterization of TWISTED-LEAF1 (TWI1), a critical gene involved in the development of the mestome sheath, vascular bundle sheath, interveinal mesophyll and sclerenchyma in rice leaves. Mutant twi1 plants have twisted leaves which might be caused by the compromised development and disordered patterning of bundle sheath, sclerenchyma and interveinal mesophyll cells. Expression of TWI1 can functionally rescue these mutant phenotypes. TWI1 encodes a transcription factor binding protein that interacts with OSH15, a class I KNOTTED1-like homeobox (KNOX) transcription factor. The cell-to-cell trafficking of OSH15 is restricted through its interaction with TWI1. Knockout or knockdown of OSH15 in twi1 rescues the twisted leaf phenotype. These studies reveal a key factor controlling cell pattern formation in rice leaves.


Asunto(s)
Oryza/citología , Hojas de la Planta/citología , Proteínas de Plantas/metabolismo , Movimiento Celular , Regulación de la Expresión Génica de las Plantas , Células del Mesófilo , Mutación , Oryza/genética , Oryza/metabolismo , Células Vegetales , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Brotes de la Planta/genética , Brotes de la Planta/metabolismo , Plantas Modificadas Genéticamente , Interferencia de ARN , Nicotiana/genética
12.
PLoS Genet ; 12(3): e1005927, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26954091

RESUMEN

Rice is a facultative short-day plant (SDP), and the regulatory pathways for flowering time are conserved, but functionally modified, in Arabidopsis and rice. Heading date 1 (Hd1), an ortholog of Arabidopsis CONSTANS (CO), is a key regulator that suppresses flowering under long-day conditions (LDs), but promotes flowering under short-day conditions (SDs) by influencing the expression of the florigen gene Heading date 3a (Hd3a). Another key regulator, Early heading date 1 (Ehd1), is an evolutionarily unique gene with no orthologs in Arabidopsis, which acts as a flowering activator under both SD and LD by promoting the rice florigen genes Hd3a and RICE FLOWERING LOCUST 1 (RFT1). Here, we report the isolation and characterization of the flowering regulator Heading Date Repressor1 (HDR1) in rice. The hdr1 mutant exhibits an early flowering phenotype under natural LD in a paddy field in Beijing, China (39°54'N, 116°23'E), as well as under LD but not SD in a growth chamber, indicating that HDR1 may functionally regulate flowering time via the photoperiod-dependent pathway. HDR1 encodes a nuclear protein that is most active in leaves and floral organs and exhibits a typical diurnal expression pattern. We determined that HDR1 is a novel suppressor of flowering that upregulates Hd1 and downregulates Ehd1, leading to the downregulation of Hd3a and RFT1 under LDs. We have further identified an HDR1-interacting kinase, OsK4, another suppressor of rice flowering under LDs. OsK4 acts similarly to HDR1, suppressing flowering by upregulating Hd1 and downregulating Ehd1 under LDs, and OsK4 can phosphorylate HD1 with HDR1 presents. These results collectively reveal the transcriptional regulators of Hd1 for the day-length-dependent control of flowering time in rice.


Asunto(s)
Flores/genética , Fotoperiodo , Hojas de la Planta/genética , Proteínas de Plantas/genética , Proteínas Quinasas/genética , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Genes Reguladores , Oryza/genética , Oryza/crecimiento & desarrollo , Fosforilación , Hojas de la Planta/crecimiento & desarrollo , Proteínas de Plantas/biosíntesis , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo
13.
Funct Integr Genomics ; 18(5): 581-591, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29748923

RESUMEN

Leaf veins play a critical role in resource supplication and photosynthate translocation; thus, it is considered as an important agricultural trait for crop breeding. The rice minor veins are parallelly grown along all the parts of the leaf from base to tip. To understand the process of minor vein development, anatomy analysis was performed to reveal the initiation and development of minor veins in rice leaf. The frequency of minor vein initiation follows a decreased tendency from leaf base to tip. An iTRAQ-based proteomics analysis was performed in rice leaf sections. Photosynthesis- and carbon fixation-related proteins accumulated a high level in the middle part of leaves. Furthermore, marker proteins involved in sucrose degradation and starch synthesis were accumulated into initiation and mature parts of minor veins, respectively. It suggests a different source-sink activity in the initiation and mature parts of minor veins in terms of photosynthate translocation. The identified proteins are candidate markers for small vein initiation in rice leaves.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Oryza/genética , Hojas de la Planta/genética , Proteínas de Plantas/genética , Proteómica/métodos , Transporte Biológico , Biomarcadores/metabolismo , Metabolismo de los Hidratos de Carbono , Ciclo del Carbono/genética , Ontología de Genes , Anotación de Secuencia Molecular , Oryza/anatomía & histología , Oryza/metabolismo , Fotosíntesis/genética , Fitomejoramiento , Hojas de la Planta/anatomía & histología , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Reología , Almidón/metabolismo , Sacarosa/metabolismo
14.
Plant Cell ; 27(4): 1061-81, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25841037

RESUMEN

Ethylene and abscisic acid (ABA) act synergistically or antagonistically to regulate plant growth and development. ABA is derived from the carotenoid biosynthesis pathway. Here, we analyzed the interplay among ethylene, carotenoid biogenesis, and ABA in rice (Oryza sativa) using the rice ethylene response mutant mhz5, which displays a reduced ethylene response in roots but an enhanced ethylene response in coleoptiles. We found that MHZ5 encodes a carotenoid isomerase and that the mutation in mhz5 blocks carotenoid biosynthesis, reduces ABA accumulation, and promotes ethylene production in etiolated seedlings. ABA can largely rescue the ethylene response of the mhz5 mutant. Ethylene induces MHZ5 expression, the production of neoxanthin, an ABA biosynthesis precursor, and ABA accumulation in roots. MHZ5 overexpression results in enhanced ethylene sensitivity in roots and reduced ethylene sensitivity in coleoptiles. Mutation or overexpression of MHZ5 also alters the expression of ethylene-responsive genes. Genetic studies revealed that the MHZ5-mediated ABA pathway acts downstream of ethylene signaling to inhibit root growth. The MHZ5-mediated ABA pathway likely acts upstream but negatively regulates ethylene signaling to control coleoptile growth. Our study reveals novel interactions among ethylene, carotenogenesis, and ABA and provides insight into improvements in agronomic traits and adaptive growth through the manipulation of these pathways in rice.


Asunto(s)
Ácido Abscísico/metabolismo , Etilenos/metabolismo , Isomerasas/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/metabolismo , Carotenoides/metabolismo , Regulación de la Expresión Génica de las Plantas
15.
Molecules ; 23(10)2018 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-30274345

RESUMEN

Cembranoids are a group of natural diterpenoid compounds with pharmaceutical potentials, and the cembratriene-diols produced by Nicotiana (tobacco) species display activities in anti-nicotine addiction and neuron protection. Although the enzymes catalyzing cembratriene-diols' formation in tobacco have been investigated, the regulatory mechanism underlying this physiological process remains unknown. This study has investigated the roles of phytohormone jasmonic acid (JA) in regulating cembratriene-diol formation in N. tabacum cv. TN90 and found that JA and COI1, the receptor protein of the bioactive derivative of JA (i.e., JA-Ile), display critical roles in regulating cembratriene-diols' formation and the expression of cembranoid synthetic genes CBTS, P450 and NtLTP1. Further studies showed that over-expressing either the gene encoding bHLH transcription factor MYC2a or that encoding MYB transcription factor MYB305 could upregulate the cembranoid synthetic genes and enhance the cembranoid production in plants with dysfunction of COI1. Further studies suggest that COI1 and its downstream regulators MYC2a and MYB305 also modulate the trichome secretion, which is correlated with cembranoid formation. Taken together, this study has demonstrated a critical role of JA-signaling components in governing the cembratriene-diol formation and the transcription of cembratriene-diol synthetic genes in tobacco. Findings in this study are of great importance to reveal the molecular regulatory mechanism underlying cembranoid synthesis.


Asunto(s)
Ciclopentanos/metabolismo , Diterpenos/metabolismo , Genes de Plantas , Ingeniería Metabólica , Nicotiana , Oxilipinas/metabolismo , Plantas Modificadas Genéticamente , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
16.
PLoS Genet ; 10(10): e1004701, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25330236

RESUMEN

Ethylene and abscisic acid (ABA) have a complicated interplay in many developmental processes. Their interaction in rice is largely unclear. Here, we characterized a rice ethylene-response mutant mhz4, which exhibited reduced ethylene-response in roots but enhanced ethylene-response in coleoptiles of etiolated seedlings. MHZ4 was identified through map-based cloning and encoded a chloroplast-localized membrane protein homologous to Arabidopsis thaliana (Arabidopsis) ABA4, which is responsible for a branch of ABA biosynthesis. MHZ4 mutation reduced ABA level, but promoted ethylene production. Ethylene induced MHZ4 expression and promoted ABA accumulation in roots. MHZ4 overexpression resulted in enhanced and reduced ethylene response in roots and coleoptiles, respectively. In root, MHZ4-dependent ABA pathway acts at or downstream of ethylene receptors and positively regulates root ethylene response. This ethylene-ABA interaction mode is different from that reported in Arabidopsis, where ethylene-mediated root inhibition is independent of ABA function. In coleoptile, MHZ4-dependent ABA pathway acts at or upstream of OsEIN2 to negatively regulate coleoptile ethylene response, possibly by affecting OsEIN2 expression. At mature stage, mhz4 mutation affects branching and adventitious root formation on stem nodes of higher positions, as well as yield-related traits. Together, our findings reveal a novel mode of interplay between ethylene and ABA in control of rice growth and development.


Asunto(s)
Ácido Abscísico/metabolismo , Etilenos/metabolismo , Oryza/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Cotiledón/efectos de los fármacos , Cotiledón/metabolismo , Etilenos/farmacología , Regulación de la Expresión Génica de las Plantas , Mutación , Oryza/efectos de los fármacos , Oryza/genética , Filogenia , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Plantones/genética , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Homología de Secuencia de Aminoácido
17.
Plant Cell Physiol ; 56(3): 497-509, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25520407

RESUMEN

Callose plays an important role in pollen development in flowering plants. In rice, 10 genes encoding putative callose synthases have been identified; however, none of them has been functionally characterized. In this study, a rice Glucan Synthase-Like 5 (GSL5) knock-out mutant was isolated that exhibited a severe reduction in fertility. Pollen viability tests indicated that the pollen of the mutant was abnormal while the embryo sac was normal. Further, GSL5-RNA interference transgenic plants phenocopied the gsl5 mutant. The RNA expression of GSL5 was found to be knocked out in the gsl5 mutant and knocked down in GSL5-RNA interference transgenic plants by real-time reverse transcripion-PCR (RT-PCR) analysis. The male sterility of the mutant was due to abnormal microspore development; an analysis of paraffin sections of the mutant anthers at various developmental stages revealed that abnormal microspore development began in late meiosis. Both the knock-out and knock-down of GSL5 caused a lack of callose in the primary cell wall of meiocytes and in the cell plate of tetrads. As a result, the callose wall of the microspores was defective. This was demonstrated by aniline blue staining and an immunogold labeling assay; the microspores could not maintain their shape, leading to premature swelling and even collapsed microspores. These data suggest that the callose synthase encoded by GSL5 plays a vital role in microspore development during late meiosis and is essential for male fertility in rice.


Asunto(s)
Gametogénesis en la Planta , Glucanos/metabolismo , Glucosiltransferasas/metabolismo , Oryza/enzimología , Oryza/fisiología , Proteínas de Plantas/metabolismo , Pared Celular/metabolismo , Fertilidad , Regulación de la Expresión Génica de las Plantas , Técnicas de Inactivación de Genes , Glucosiltransferasas/genética , Mutación/genética , Oryza/genética , Oryza/ultraestructura , Proteínas de Plantas/genética , Polen/genética , Polen/ultraestructura , Interferencia de ARN , Reproducción , Coloración y Etiquetado
18.
Plant Biotechnol J ; 13(4): 514-25, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25418842

RESUMEN

Rice is a major food crop with enormous biomass residue for biofuels. As plant cell wall recalcitrance basically decides a costly biomass process, genetic modification of plant cell walls has been regarded as a promising solution. However, due to structural complexity and functional diversity of plant cell walls, it becomes essential to identify the key factors of cell wall modifications that could not much alter plant growth, but cause an enhancement in biomass enzymatic digestibility. To address this issue, we performed systems biology analyses of a total of 36 distinct cell wall mutants of rice. As a result, cellulose crystallinity (CrI) was examined to be the key factor that negatively determines either the biomass enzymatic saccharification upon various chemical pretreatments or the plant lodging resistance, an integrated agronomic trait in plant growth and grain production. Notably, hemicellulosic arabinose (Ara) was detected to be the major factor that negatively affects cellulose CrI probably through its interlinking with ß-1,4-glucans. In addition, lignin and G monomer also exhibited the positive impact on biomass digestion and lodging resistance. Further characterization of two elite mutants, Osfc17 and Osfc30, showing normal plant growth and high biomass enzymatic digestion in situ and in vitro, revealed the multiple GH9B candidate genes for reducing cellulose CrI and XAT genes for increasing hemicellulosic Ara level. Hence, the results have suggested the potential cell wall modifications for enhancing both biomass enzymatic digestibility and plant lodging resistance by synchronically overexpressing GH9B and XAT genes in rice.


Asunto(s)
Arabinosa/metabolismo , Enzimas/metabolismo , Lignina/metabolismo , Mutación , Oryza/metabolismo , Polisacáridos/metabolismo , Biomasa , Pared Celular/enzimología , Pared Celular/metabolismo , Genes de Plantas , Oryza/genética
19.
Plant Physiol ; 165(1): 335-45, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24578505

RESUMEN

Cytokinin plays an important role in plant development and stress tolerance. Studies of Arabidopsis (Arabidopsis thaliana) have demonstrated that cytokinin acts through a two-component system that includes a histidine (His) kinase, a His phosphotransfer protein (HP), and a response regulator. Phylogenetic analyses have revealed the conservation of His kinases but lineage-specific expansion of HPs and response regulators in rice (Oryza sativa). However, whether the functions of rice HPs have diverged remains unknown. In this study, two rice authentic HPs (OsAHP1 and OsAHP2) were knocked down simultaneously via RNA interference (RNAi), and the transgenic OsAHP-RNAi plants exhibited phenotypes expected for a deficiency in cytokinin signaling, including dwarfism with reduced internode lengths, enhanced lateral root growth, early leaf senescence, and reduced tiller numbers and fertility under natural conditions. The OsAHP-RNAi seedlings were also hyposensitive to exogenous cytokinin. Furthermore, OsAHP-RNAi seedlings were hypersensitive to salt treatment but resistant to osmotic stress relative to wild-type plants. These results indicate that OsAHPs function as positive regulators of the cytokinin signaling pathway and play different roles in salt and drought tolerance in rice.


Asunto(s)
Citocininas/metabolismo , Oryza/metabolismo , Oryza/fisiología , Transducción de Señal , Estrés Fisiológico , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Citocininas/farmacología , Citosol/efectos de los fármacos , Citosol/metabolismo , Histidina , Oryza/genética , Oryza/crecimiento & desarrollo , Presión Osmótica/efectos de los fármacos , Fenotipo , Fosforilación/efectos de los fármacos , Desarrollo de la Planta/efectos de los fármacos , Proteínas de Plantas , Raíces de Plantas/anatomía & histología , Raíces de Plantas/efectos de los fármacos , Plantas Modificadas Genéticamente , Interferencia de ARN/efectos de los fármacos , Plantones/efectos de los fármacos , Plantones/fisiología , Transducción de Señal/efectos de los fármacos , Cloruro de Sodio/farmacología , Estrés Fisiológico/efectos de los fármacos
20.
PLoS Genet ; 8(7): e1002809, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22792078

RESUMEN

HEI10 was first described in human as a RING domain-containing protein that regulates cell cycle and cell invasion. Mice HEI10(mei4) mutant displays no obvious defect other than meiotic failure from an absence of chiasmata. In this study, we characterize rice HEI10 by map-based cloning and explore its function during meiotic recombination. In the rice hei10 mutant, chiasma frequency is markedly reduced, and those remaining chiasmata exhibit a random distribution among cells, suggesting possible involvement of HEI10 in the formation of interference-sensitive crossovers (COs). However, mutation of HEI10 does not affect early recombination events and synaptonemal complex (SC) formation. HEI10 protein displays a highly dynamic localization on the meiotic chromosomes. It initially appears as distinct foci and co-localizes with MER3. Thereafter, HEI10 signals elongate along the chromosomes and finally restrict to prominent foci that specially localize to chiasma sites. The linear HEI10 signals always localize on ZEP1 signals, indicating that HEI10 extends along the chromosome in the wake of synapsis. Together our results suggest that HEI10 is the homolog of budding yeast Zip3 and Caenorhabditis elegans ZHP-3, and may specifically promote class I CO formation through modification of various meiotic components.


Asunto(s)
Cromosomas de las Plantas/genética , Intercambio Genético , Meiosis/genética , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Arabidopsis/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas Cromosómicas no Histona/genética , Clonación Molecular , ADN Helicasas/genética , Datos de Secuencia Molecular , Dominios RING Finger , Recombinación Genética , Homología de Secuencia de Aminoácido , Complejo Sinaptonémico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA