Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Kidney Int ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38789037

RESUMEN

Persistently elevated glycolysis in kidney has been demonstrated to promote chronic kidney disease (CKD). However, the underlying mechanism remains largely unclear. Here, we observed that 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3), a key glycolytic enzyme, was remarkably induced in kidney proximal tubular cells (PTCs) following ischemia-reperfusion injury (IRI) in mice, as well as in multiple etiologies of patients with CKD. PFKFB3 expression was positively correlated with the severity of kidney fibrosis. Moreover, patients with CKD and mice exhibited increased urinary lactate/creatine levels and kidney lactate, respectively. PTC-specific deletion of PFKFB3 significantly reduced kidney lactate levels, mitigated inflammation and fibrosis, and preserved kidney function in the IRI mouse model. Similar protective effects were observed in mice with heterozygous deficiency of PFKFB3 or those treated with a PFKFB3 inhibitor. Mechanistically, lactate derived from PFKFB3-mediated tubular glycolytic reprogramming markedly enhanced histone lactylation, particularly H4K12la, which was enriched at the promoter of NF-κB signaling genes like Ikbkb, Rela, and Relb, activating their transcription and facilitating the inflammatory response. Further, PTC-specific deletion of PFKFB3 inhibited the activation of IKKß, I κ B α, and p65 in the IRI kidneys. Moreover, increased H4K12la levels were positively correlated with kidney inflammation and fibrosis in patients with CKD. These findings suggest that tubular PFKFB3 may play a dual role in enhancing NF-κB signaling by promoting both H4K12la-mediated gene transcription and its activation. Thus, targeting the PFKFB3-mediated NF-κB signaling pathway in kidney tubular cells could be a novel strategy for CKD therapy.

2.
Anal Chem ; 96(1): 419-426, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38152877

RESUMEN

Urological cancers such as bladder or prostate cancer represent one of the most malignant tumors that accounts for an extremely high mortality. However, conventionally standard diagnostics for urological cancers are hardly available in low-resource settings. We developed herein a hand-held fluorescent imaging platform by integrating a multiplexed isothermal exponential amplification reaction (EXPAR) with a microgel-enriched methodology for sensitive profiling of quaternary microRNAs (miRNAs) in urine and quick diagnosis of urological cancers at the early stage. The target miRNA mixtures in the urine underwent four parallel EXPARs without cross-reactivity, followed by surface concentration and hybridization by the encoded polyacrylamide microgels. This mix-and-read strategy allowed for one-pot analysis of several key miRNAs simultaneously and provided 5-fold enhancement in fluorescent detection sensitivities compared to the individual EXPAR-based assays. Four urinary miRNAs (let-7a, miRNA-155, -223, and -143) could be quantitatively determined in a wide linear range from 50 fM to 30 nM, with the limits of detection at femtomolar levels. Using a smartphone-based imaging microreader, healthy and cancerous cohorts with prostate, bladder, and renal cell cancers could be discriminated in 30 min with the accuracy >83% using linear discriminant analysis. The developed detection platform has proven to be a portable, noninvasive, and useful complement to the toolbox for miRNA-based liquid biopsies, which holds immense potential and advantage for regular and large-scale applications in early cancer diagnosis.


Asunto(s)
MicroARNs , Neoplasias Urológicas , Humanos , MicroARNs/análisis , Teléfono Inteligente , Técnicas de Amplificación de Ácido Nucleico/métodos , Hibridación de Ácido Nucleico , Neoplasias Urológicas/diagnóstico , Neoplasias Urológicas/genética
3.
Environ Sci Technol ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38935526

RESUMEN

Since the transfer of microplastic across the sea-air interface was first reported in 2020, numerous studies have been conducted on its emission flux estimation. However, these studies have shown significant discrepancies in the estimated contribution of oceanic sources to global atmospheric microplastics, with evaluations ranging from predominant to negligible, varying by 4 orders of magnitude from 7.7 × 10-4 to 8.6 megatons per year, thereby creating considerable confusion in the research on the microplastic cycle. Here, we provide a perspective by applying the well-established theory of particulate transfer through the sea-air interface. The upper limit of global sea-air emission flux microplastics was calculated, aiming to constrain the controversy in the previously reported fluxes. Specifically, the flux of sub-100 µm microplastic cannot exceed 0.01 megatons per year, and for sub-0.1 µm nanoplastics, it would not exceed 3 × 10-7 megatons per year. Bridging this knowledge gap is crucial for a comprehensive understanding of the sea-air limb in the "plastic cycle", and facilitates the management of future microplastic pollution.

4.
J Environ Sci (China) ; 138: 88-101, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38135436

RESUMEN

The reaction of carbonyl-to-imine/hemiaminal conversion in the atmospheric aqueous phase is a critical pathway to produce the light-absorbing N-containing secondary organic compounds (SOC). The formation mechanism of these compounds has been wildly investigated in bulk solutions with a low ionic strength. However, the ionic strength in the aqueous phase of the polluted atmosphere may be higher. It is still unclear whether and to what extent the inorganic ions can affect the SOC formation. Here we prepared the bulk solution with certain ionic strength, in which glyoxal and ammonium were mixed to mimic the aqueous-phase reaction. Molecular characterization by High-resolution Mass Spectrometry was performed to identify the N-containing products, and the light absorption of the mixtures was measured by ultraviolet-visible spectroscopy. Thirty-nine N-containing compounds were identified and divided into four categories (N-heterocyclic chromophores, high-molecular-weight compounds with N-heterocycle, aliphatic imines/hemiaminals, and the unclassified). It was observed that the longer reaction time and higher ionic strength led to the formation of more N-heterocyclic chromophores and the increasing of the light-absorbance of the mixture. The added inorganic ions were proposed to make the aqueous phase somewhat viscous so that the molecules were prone to undergo consecutive and intramolecular reactions to form the heterocycles. In general, this study revealed that the enhanced ionic strength and prolonged reaction time had the promotion effect on the light-absorbing SOC formation. It implies that the aldehyde-derived aqueous-phase SOC would contribute more light-absorbing particulate matter in the industrial or populated area where inorganic ions are abundant.


Asunto(s)
Compuestos Orgánicos , Material Particulado , Material Particulado/análisis , Compuestos Orgánicos/análisis , Espectrometría de Masas/métodos , Iminas/análisis , Iones , Concentración Osmolar , Aerosoles/análisis
5.
Anal Chem ; 95(44): 16049-16053, 2023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37781972

RESUMEN

A versatile microfluidic-SERS barcoding system is developed for sensitive and multiplexed imaging of circulating microRNAs through interfacial probing of encoded nanorod aggregates at diverse patterned nanogaps. The use of a single-layer, vertically oriented nanorod array creates a plasmonic coupling-based electromagnetic field with enormously enhanced Raman outputs. The introduction of the herringbone micromixer with circulated microflow sampling accelerates the hybridization and capture of nanorod aggregates on the plasmonic substrate. The method is able to achieve ideal sensitivities at subfemtomolar levels for four miRNAs, with multiplexed assay capability for an integrated liquid biopsy. The on-chip digital profiling of serum miRNAs in mapping and barcoding formats enable both clear discrimination of untreated cancer patients from the healthy cohort and precise classification of tumor stages, metastatic conditions, and subtypes, with an overall accuracy of 94%. The SERS-based microfluidic barcoding system therefore holds great promise in early cancer screening, diagnosis, and prognosis.


Asunto(s)
Nanopartículas del Metal , MicroARNs , Nanotubos , Neoplasias , Humanos , Microfluídica , Espectrometría Raman/métodos , Pronóstico
6.
Mol Ther ; 30(1): 431-447, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34450251

RESUMEN

Hepatocellular carcinoma (HCC) is one of the major causes of cancer-related death worldwide. Circular RNAs (circRNAs), a novel class of non-coding RNA, have been reported to be involved in the etiology of various malignancies. However, the underlying cellular mechanisms of circRNAs implicated in the pathogenesis of HCC remain unknown. In this study, we identified a functional RNA, hsa_circ_0000384 (circMRPS35), from public tumor databases using a set of computational analyses, and we further identified that circMRPS35 was highly expressed in 35 pairs of HCC from patients. Moreover, knockdown of the expression of circMRPS35 in Huh-7 and HCC-LM3 cells suppressed their proliferation, migration, invasion, clone formation, and cell cycle in vitro, and it suppressed tumor growth in vivo as well. Mechanically, circMRPS35 sponged microRNA-148a-3p (miR-148a), regulating the expression of Syntaxin 3 (STX3), which modulated the ubiquitination and degradation of phosphatase and tensin homolog (PTEN). Unexpectedly, we detected a peptide encoded by circMRPS35 (circMRPS35-168aa), which was significantly induced by chemotherapeutic drugs and promoted cisplatin resistance in HCC. These results demonstrated that circMRPS35 might be a novel mediator in HCC progress, and they raise the potential of a new biomarker for HCC diagnosis and prognosis, as well as a novel therapeutic target for HCC patients.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Cisplatino/farmacología , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo
7.
Sensors (Basel) ; 23(18)2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37765851

RESUMEN

A model-free adaptive positioning control strategy for piezoelectric stick-slip actuators (PSSAs) with uncertain disturbance is proposed. The designed controller consists of a data-driven self-learning feedforward controller and a model-free adaptive feedback controller with a radial basis function neural network (RBFNN)-based observer. Unlike the traditional model-based control methods, the model-free adaptive control (MFAC) strategy avoids the complicated modeling process. First, the nonlinear system of the PSSA is dynamically linearized into a data model. Then, the model-free adaptive feedback controller based on a data model is designed to avoid the complicated modeling process and enhance the robustness of the control system. Simultaneously, the data-driven self-learning feedforward controller is improved to realize the high-precision control performance. Additionally, the convergence of the tracking error and the boundedness of the control output signal are proved. Finally, the experimentally obtained results illustrate the advantages and effectiveness of the developed control methodology on the bidirectional stick-slip piezoelectric actuator with coupled asymmetric flexure-hinge mechanisms. The positioning error through the proposed controller reaches 30 nm under the low-frequency condition and 200 nm under the high-frequency condition when the target position is set to 100 µm. In addition, the target position can be accurately tracked in less than 0.5 s in the presence of a 100 Hz frequency.

8.
Soft Matter ; 18(45): 8702, 2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36353966

RESUMEN

Correction for 'Construction of durable superhydrophobic and anti-icing coatings via incorporating boroxine cross-linked silicone elastomers with good self-healability' by Hengfei Liang et al., Soft Matter, 2022, https://doi.org/10.1039/d2sm01106a.

9.
Soft Matter ; 18(43): 8238-8250, 2022 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-36274264

RESUMEN

The fragility of the micro-nano structure makes superhydrophobic coatings highly susceptible to stress, resulting in a decrease in their superhydrophobic and anti-icing performance. In this work, we proposed a new insight to improve durability by incorporating a thin layer of self-healable elastomer with a dynamic network on the micro-nano structure. We constructed superhydrophobic coatings (EP/SiO2/BFVSE) with a three-layered structure of the epoxy resin/silica nanoparticle/silicon elastomer. The silicon elastomer (BFVES) with a B-O dynamic cross-linked network and fluorinated moieties was synthesized by graft polymerization on vinyl silicon oil. The preparation route is facile and convenient for mass production. BFVES has rapid self-healing properties for scratches at room-temperature, underwater and at -18 °C. EP/SiO2/BFVSE preserved apparently higher CAs after being immersed in pH = 1, pH = 13, and NaCl solutions for 96 h as compared with the EP/SiO2 coating. In a water striking environment, the CA of EP/SiO2/BFVSE was slightly decreased to 153°. SEM images further reveal that the recovery of superhydrophobicity and icephobicity is attributed to the self-healing behavior of the boroxine-containing silicon elastomer. The EP/SiO2/BFVSE coating also possesses additional self-healing ability under chemical oxidation. The high durability of the self-healable superhydrophobic coating enables great application potential in aircraft, marine vessels, and outdoor facilities in harsh environments.

10.
Environ Sci Technol ; 56(3): 1586-1593, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35038862

RESUMEN

Atmospheric black carbon (BC) has a large yet highly uncertain contribution to global warming. When mixed with non-BC/coating material during atmospheric aging, the BC light absorption can be enhanced through the lensing effect. Laboratory and modeling studies have consistently found strong BC absorption enhancement, while the results in ambient measurements are conflicting, with some reporting weak absorption enhancement even for particles with large bulk coating amounts. Here, from our direct field observations, we report both large and minor absorption enhancement factors for different BC-containing particle populations with large bulk non-BC-to-BC mass ratios. By gaining insights into the measured coating material distribution across each particle population, we find that the level of absorption enhancement is strongly dependent on the particle-resolved mixing state. Our study shows that the greater mixing-state heterogeneity results in the larger difference between observed and predicted absorption enhancement. We demonstrate that by considering the variability in coating material thickness in the optical model, the previously observed model measurement discrepancy of absorption enhancement can be reconciled. The observations and improved optical models reported here highlight the importance of mixing-state heterogeneity on BC's radiative forcing, which should be better resolved in large-scale models to increase confidence when estimating the aerosol radiation effect.


Asunto(s)
Carbono , Hollín , Aerosoles/análisis , Calentamiento Global
11.
Nutr Metab Cardiovasc Dis ; 32(3): 624-631, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35115211

RESUMEN

BACKGROUND AND AIMS: Lower serum chloride (Cl) levels have been associated with excess mortality in pre-dialysis chronic kidney disease patients. However, the relationship between serum Cl levels and clinical outcomes in continuous ambulatory peritoneal dialysis (CAPD) patients is unclear. METHODS AND RESULTS: In this retrospective cohort study, we enrolled 1656 eligible incident patients undergoing CAPD from 2006 to 2013, and followed until December 2018. Cox regression analyses were used to examine the association between baseline and time-varying serum Cl levels and mortality. During a median follow-up of 46 months, 503 patients (30.4%) died. In analyses of baseline serum Cl, the adjusted hazard ratios (HR) for tertile 1 (<100.0 mmol/L), tertile 2 (100.0-103.0 mmol/L) versus tertile 3 (>103.0 mmol/L) were 2.34 [95% confidence interval (CI) 1.43-3.82] and 1.73 (95% CI 1.24-2.42) for all-cause mortality, 2.86 (95% CI 1.47-5.56) and 1.90 (95% CI 1.19-3.02) for cardiovascular disease (CVD) mortality, respectively. And a linear relationship was observed between serum Cl and mortality. Further, the inverse association between serum Cl and CVD mortality was particularly accentuated in the patients who were ≥50 years or with a history of diabetes. Similarly, lower time-varying serum Cl levels were also associated with a significant increased risk of all-cause and CVD death. CONCLUSION: Lower serum Cl levels predicted higher risk of all-cause and CVD mortality in CAPD patients.


Asunto(s)
Enfermedades Cardiovasculares , Fallo Renal Crónico , Diálisis Peritoneal Ambulatoria Continua , Diálisis Peritoneal , Cloruros , Humanos , Fallo Renal Crónico/diagnóstico , Fallo Renal Crónico/terapia , Diálisis Peritoneal/efectos adversos , Diálisis Peritoneal Ambulatoria Continua/efectos adversos , Modelos de Riesgos Proporcionales , Estudios Retrospectivos
12.
Nano Lett ; 21(15): 6718-6724, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34324345

RESUMEN

In this work, a single microbead covered with a plasmonic layer is employed as the microreactor for the multiplexed miRNA analysis without nucleic acid amplification. On the plasmonic layer, the S9.6 antibody is adopted as the universal module for binding DNA/miRNA duplexes regardless of the sequence. Meanwhile, there is also a SERS reporter gold nanoparticle (GNP) pool, in which each group of GNPs is labeled with both a Raman coding molecule and a DNA probe for recognizing a given miRNA of interest. The target miRNAs will lead to the specific capture of the corresponding SERS reporter GNPs onto the plasmonic layer, which will enormously enhance the target miRNA-induced SERS signals. Finally, the enhanced SERS signals concentrated on the microbead will be mapped out by a confocal Raman microscope. The proposed method achieves the high-precision sensing of sub-pM target miRNA in a simple mix-and-read format and possesses multiplexed assay capability.


Asunto(s)
Nanopartículas del Metal , MicroARNs , Oro , MicroARNs/genética , Microesferas , Espectrometría Raman
13.
J Environ Manage ; 321: 115991, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35994961

RESUMEN

Urban road transport disruptions caused by urban floods have become severe in the Chinese megacities due to climate change and urbanisation. Urban road planning, design, and land drainage systems are insufficiently coping with intense rainstorms, especially in the wet season. This is reflected in more research findings on urban flood impacts and road transport disruption over the past decade. Here we provide a critical overview of current research on urban road inundation, road traffic delays, and accessibility losses under flood conditions, and illustrate up-to-date practices with the relevant governmental institutions. Our review implies that urban flood management in road design is still at an embryonic stage in the Chinese megacities. Hence, we review the lessons and experiences of urban flood impacts on roads in the global context. We argue that it is essential to enhance better co-production practices on emergency responses and recovery measures between authorities, which is vital to improving flood resilience in uncertain climates.


Asunto(s)
Inundaciones , Urbanización , China , Ciudades , Planificación de Ciudades
14.
Water Sci Technol ; 86(10): 2642-2657, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36450678

RESUMEN

The synthesis of optimized thin film nanocomposite (TFN) membrane with no or few defects is an efficacious method which can improve nanofiltration performance. However, poor dispersion of fillers in the organic phase and wrong compatibility between fillers and polymerizate are still a serious problem. In this study, the particle size of metal organic framework (MOF), aluminum-based metal-organic frameworks (CAU-1) was modulated and for the first time, dodecyl aldehyde was used to modify the surface hydrophobicity of CAU-1, which improved the dispersibility and inhibited the aggregation in the trimesoyl chloride (TMC)/n-hexane solution; later CAU-1 and modified CAU-1 were incorporated into the polyamide (PA) selective layer to synthesize TFN membrane by interfacial polymerization (IP). The particle size modulation and modification of the CAU-1 were demonstrated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) characterization. The characterization showed that PA selective layer was synthesized on the top layer of polysulfone (PSF) substrate. The pure water flux of the TFN membrane was increased to 79.89 ± 1.24 L·m-2·h-1·bar-1 compared to the original thin film composite (TFC) membrane, which was due to the polymerization of 100 nm modified CAU-1 on the PA layer to form a new water molecular channel, thus increasing the water flux by about 70%.

15.
J Cell Mol Med ; 25(4): 2069-2081, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33434305

RESUMEN

Osteoporosis is a metabolic disease that results from oxidative stress or inflammation in renal disorders. microRNAs (miRNAs) are recently implicated to participate in osteoporosis, but the mechanism remains largely unexplored. Herein, we aimed to explore the potential role of miR-15b in osteoblast differentiation and autophagy in osteoporosis. We established osteoporosis models through ovariectomy and determined that miR-15b was highly expressed whereas USP7 and KDM6B were poorly expressed in tissue of osteoporosis mice. Treatment of silenced miR-15b resulted in the elevation of decreased bone mineral density (BMD), the maximum elastic stress and the maximum load of osteoporosis mice. In osteoblasts, miR-15 overexpression decreased proliferation but suppressed the cell differentiation and autophagy, accompanied with decreased expression of USP7. Mechanistically, miR-15 bound and inhibited USP7 expression, while overexpression of USP7 promoted autophagy of osteoblasts. USP7, importantly, strengthened the stability of KDM6B and promoted KDM6B expression. MG132 protease inhibitor increased KDM6B and USP7 expression in osteoblasts. Silencing of KDM6B reversed the promoting effect on autophagy and proliferation induced by overexpression of USP7. Taken altogether, miR-15b inhibits osteoblast differentiation and autophagy to aggravate osteoporosis by targeting USP7 to regulate KDM6B expression.


Asunto(s)
Autofagia/genética , Diferenciación Celular/genética , Histona Demetilasas con Dominio de Jumonji/genética , MicroARNs/genética , Osteoblastos/metabolismo , Osteoporosis/etiología , Peptidasa Específica de Ubiquitina 7/genética , Animales , Modelos Animales de Enfermedad , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Humanos , Histona Demetilasas con Dominio de Jumonji/metabolismo , Ratones , Osteoblastos/citología , Osteogénesis , Osteoporosis/metabolismo , Osteoporosis/patología , Transducción de Señal , Peptidasa Específica de Ubiquitina 7/metabolismo
16.
Anal Chem ; 93(41): 13990-13997, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34613714

RESUMEN

Photochemical pollutants pose a substantial threat to human health in both outdoor and indoor environments. Herein, we prepare a class of gold nanoparticle-based colorimetric sensor arrays on optimized hydrophobic substrates using a simple pin-printing method for accurate identification and quantification of various gas-phase oxidants, as these microdetectors are low cost, sensitive, and easy to fabricate. For an array of AuNP sensors modified with various thiol-terminated ligands, a unique and distinguishable change in color (i.e., red, green, and blue response patterns) was obtained for each specific pollutant for molecular fingerprinting. Remarkable discrimination among 15 gases at a fairly low vapor concentration (i.e., 500 ppb) was illustrated using standard chemometric methods. Using digital imaging, the AuNP colorimetric sensor array offers ultrasensitive dosimetric identification of gas-phase oxidants relevant to outdoor and indoor air pollution, with limits of detection generally at sub-ppb levels for 2 h measurement. As a practical application, the sensor array is able to predict the overall air quality in indoor office environments over 24 h. Such sensor array based on chemically induced sintering of nanoparticles has significant implications for the development of nanosensors used in continuous monitoring of potential airborne pollutants at low concentrations from a large number of locations in a cost-effective manner.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Nanopartículas del Metal , Oxidantes Fotoquímicos , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Colorimetría , Oro , Humanos
17.
Environ Sci Technol ; 55(17): 11612-11623, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34415770

RESUMEN

Ultraviolet (UV)/chlorine draws increasing attention for the abatement of recalcitrant organic pollutants. Herein, it was found that TiO2 would significantly promote the degradation of dimethyl phthalate (DMP) in the UV/chlorine system (from 19 to 84%). Hydroxyl radicals (HO•) and chlorine radicals (Cl•) were the dominant reactive species for DMP degradation in the UV/chlorine/TiO2 system. Chlorine decayed much faster in UV/chlorine/TiO2 compared with UV/chlorine, which is possibly because photogenerated electrons (ecb-) and superoxide radicals (O2•-) have high reactivity with chlorine. As a result, the recombination of photogenerated holes (hvb+) and ecb- was inhibited and the accumulation of HO• and Cl• was facilitated. A kinetic model was established to simulate the reaction process, and it was found that the concentrations of HO• and Cl• were several times to dozens of times higher in UV/chlorine/TiO2 than that in UV/chlorine. The contributions of HO• and Cl• to DMP degradation were 70.3 and 29.7% by model simulation, respectively, and were close to the probe experiment result. In the UV/chlorine/TiO2 system, the degradation of DMP did not follow pseudo-first-order kinetics but the degradation of benzoate fitted well with pseudo-first-order kinetics. This phenomenon was elucidated by the structure of the pollutant and TiO2 and further tested by calculating the adsorption energy (Eads)/binding energy (Eb) with density functional theory. Due to faster decay of chlorine, lower amounts of disinfection byproducts formed in UV/chlorine/TiO2 compared with UV/chlorine. Adding TiO2 into the UV/chlorine system can promote the degradation of recalcitrant organic pollutants in an aqueous environment.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Cloro , Cinética , Oxidación-Reducción , Titanio , Rayos Ultravioleta , Contaminantes Químicos del Agua/análisis
18.
Int J Neurosci ; 131(7): 625-633, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32186218

RESUMEN

AIM/PURPOSE: Dental pulp stem cells (DPSCs) were widely used as seed cells in the field of tissue engineering and regenerative medicine, including spinal cord injury (SCI) repair and other neuronal degenerative diseases, due to their easy isolation, multiple differentiation potential, low immunogenicity and low rates of rejection during transplantation. Various studies have shown that bFGF can enhance peripheral nerve regeneration after injury, and phospho-ERK (p-ERK) activation as a major mediator may be involved in this process. Previous studies also have proved that a suitable biomaterial scaffold can carry and transport the therapeutic cells effectively to the recipient area. It has showed in our earlier experiments that 3D porous chitosan scaffolds exhibited a suitable circumstance for survival and neural differentiation of DPSCs in vitro. The purpose of the study was to evaluate the influence of chitosan scaffolds and bFGF on differentiation of DPSCs. MATERIALS AND METHODS: In current study, DPSCs were cultured in chitosan scaffolds and treated with neural differentiation medium for 7 days. The neural genes and protein markers were analyzed by western blot and immunofluorescence. Meanwhile, the relevant signaling pathway involved in this process was also tested. RESULTS: Our study revealed that the viability of DPSCs was not influenced by co-culture with the chitosan scaffolds as well as bFGF. Compared with the control and DPSC/chitosan-scaffold groups, the levels of GFAP, S100ß and ß-tubulin III significantly increased in the DPSC/chitosan-scaffold+bFGF group. CONCLUSION: Chitosan scaffolds were non-cytotoxic to the survival of DPSCs, and chitosan scaffolds combined with bFGF facilitated the neural differentiation of DPSCs. The transplantation of DPSCs/chitosan-scaffold+bFGF might be a secure and effective method of treating SCI and other neuronal diseases.


Asunto(s)
Diferenciación Celular , Quitosano , Pulpa Dental , Factor 2 de Crecimiento de Fibroblastos , Células Madre , Andamios del Tejido , Adolescente , Adulto , Células Cultivadas , Humanos , Tercer Molar , Porosidad , Adulto Joven
19.
Anal Chem ; 92(18): 12387-12393, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32809810

RESUMEN

A single microbead (MB)-concentrated surface-enhanced Raman scattering (SERS) mapping strategy is proposed for ultrasensitive and multiplexed immunoassay with high precision. In this design, the SERS tags are specifically immobilized on the surface of a plasmonic gold nanoparticle (GNP) layer-coated single MB via target protein-mediated immune coupling. By this means, even ultralow target dosage can bring highly concentrated SERS tags on the confined small zone around the single MB, and the target-induced SERS signals are largely enhanced by the plasmonic layer, endowing the proposed strategy with ultrahigh sensitivity to quantify subpicogram per milliliter levels of proteins. Moreover, the per-pixel averaged SERS intensity is adopted for target quantitation through mapping the SERS signals around the MB's surface, achieving greatly improved reproducibility compared with traditional single-point measurement. Benefiting from the intrinsic merits of SERS mapping, this elegant strategy also enables multiplexed immunoassay on a single MB.


Asunto(s)
Oro/química , Inmunoensayo , Nanopartículas del Metal/química , Proteínas/análisis , Animales , Bovinos , Humanos , Espectrometría Raman , Propiedades de Superficie
20.
Environ Monit Assess ; 192(5): 290, 2020 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-32300920

RESUMEN

With the rapid advancement of industrialization without effective supervision, industrial aquatic toxic metal (TM) emissions pose threats to human health in China. Due to differences in socioeconomic development, the regional disparity of industrial aquatic TM emissions is obvious nationwide. In this study, the human health impacts (HHIs) of industrial aquatic TM emissions (i.e., mercury (Hg), cadmium (Cd), hexavalent chromium (Cr(VI)), lead (Pb), and arsenic (As)) in the 31 provinces of China were evaluated based on the ReCiPe method, and the driving factors affecting HHIs from 2000 to 2015 were decomposed using the logarithmic mean Divisia index (LMDI) method. The results showed that the HHIs gradually decreased, with more than an 80% decrease from 2000 to 2015. The order of the TMs contributing to the national HHIs in 2015 was as follows: As (79.5%) > Cr(VI) (19.6%) > Hg (0.4%) > Pb (0.2%) = Cd (0.2%), and 21 (68%) provinces were dominated by industrial aquatic As emissions. Economic development is the major driving factor of the increase in HHIs, while the HHI strength and wastewater discharge intensity are the key driving factors causing reductions in the HHIs. Hunan, Inner Mongolia, Hubei, and Jiangxi accounted for approximately 55% of the total HHIs in 2015. Some suggestions for reducing HHIs based on the local realities of different provinces were put proposed considering two aspects: economic strategy and technical capability.


Asunto(s)
Mercurio , Metales Pesados , Contaminantes del Agua , China , Salud Ambiental , Monitoreo del Ambiente , Intoxicación por Metales Pesados , Humanos , Industrias , Contaminantes del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA