Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38847362

RESUMEN

Prussian blue analogue (PBA)/metal-organic frameworks (MOFs) are multifunctional precursors for the synthesis of metal/metal compounds, carbon, and their derived composites (P/MDCs) in chemical, medical, energy, and other applications. P/MDCs combine the advantages of both the high specific surface area of PBA/MOF and the electronic conductivity of metal compound/carbon. Although the calcination under different atmospheres has been extensively studied, the transformation mechanism of PBA/MOF under hydrothermal conditions remains unclear. The qualitative preparation of P/MDCs in hydrothermal conditions remains a challenge. Here, we select PBA to construct a machine-learning model and measure its hydrothermal phase diagram. The architecture-activity relationship of substances among nine parameters was analyzed for the hydrothermal phase transformation of PBA. Excitingly, we established a universal qualitative model to accurately fabricate 31 PBA derivates. Additionally, we performed three-dimensional reconstructed transmission electron microscopy, X-ray absorption fine structure spectroscopy, ultraviolet photoelectron spectroscopy, in situ X-ray powder diffraction, and theoretical calculation to analyze the advantages of hydrothermal derivatives in the oxygen evolution reaction and clarify their reaction mechanisms. We uncover the unified principles of the hydrothermal phase transformation of PBA, and we expect to guide the design for a wide range of composites.

2.
Angew Chem Int Ed Engl ; : e202410255, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38881320

RESUMEN

Metal-organic frameworks (MOFs) are considered as a promising candidate for advancing energy storage owing to their intrinsic multi-channel architecture, high theoretical capacity, and precise adjustability. However, the low conductivity and poor structural stability lead to unsatisfactory rate and cycling performance, greatly hindering their practical application. Herein, we propose a sea urchin-like Co-ZIF-L superstructure using molecular template to induce self-assembly followed by ion exchange method, which shows improved conductivity, successive channels, and high stability. The ion exchange can gradually etch the superstructure, leading to the reconstruction of Co-ZIF-L with three-dimensional (3D) cross-linked ultrathin porous nanosheets. Moreover, the precise control of Co to Ni ratios can construct effective micro-electric field and synergistically enhance the rapid transfer of electrons and electrolyte ions, improving the conductivity and stability of CoNi-ZIF-L. The Co6.53Ni-ZIF-L electrode exhibits a high specific capacity (602 F g-1 at 1 A g-1) and long cycling stability (95.3% retention after 4,000 cycles at 5 A g-1). The Co6.53Ni-ZIF-L//AC asymmetric flexible supercapacitor employing gel electrolyte also exhibits excellent cycling stability (93.3% retention after 4000 cycles at 5 A g-1). This discovery provides valuable insights for electrode material selection and energy storage efficiency improvement.

3.
Opt Express ; 31(25): 41740-41755, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38087565

RESUMEN

In this study, a collaborative compensation method for low-dimensional attitude maneuvering and time delay integration charge-coupled device (TDICCD) line-frequency matching is proposed. The method is combined with the validation and analysis of the coordinate system transformation model to address the mismatch between the TDI charge transfer speed and the speed of the target. This mismatch is caused by the inconsistency between the rotational scanning direction of the double-sided mirror used for dynamic vertical orbit scanning imaging in low Earth-orbit satellites and the direction of the satellite along its orbit. The image motion per unit exposure time is decreased from 0.619µm to 0.023µm compared with the uncompensated maneuver mode, and the image quality is noticeably higher.

4.
Angew Chem Int Ed Engl ; 62(41): e202311075, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37602487

RESUMEN

The limited active sites and poor acid-alkaline solution stability of metal-organic frameworks (MOFs), significantly limit their wider application. In this study, the acid property of tannic acid (TA) was used as an etchant to etch the surface-active sites. Subsequently, the further chelation of the protonated TA with the exposed metal active site can effectively protect the metal ions. Meanwhile, the TA provided a large amount of phenolic hydroxyl groups, which can greatly improve the stability of imidazolate-coordinated MOFs. The electrochemical test results indicated that the MOFs composite materials synthesized using this scheme had high specific capacitance and stability. And the mechanism of its electrochemical reaction process was explored through in situ X-ray diffraction (XRD) and theoretical calculations. In addition, the same treatment was carried out through a series of carboxyl-coordinated MOFs, which further confirmed the principle of this scheme to obtain a higher active site and stability. This paper explains the mechanism of functionalization of nano-MOFs by polyphenolic compounds, providing new ideas for the research of nano-MOFs.

5.
Inorg Chem ; 61(2): 911-922, 2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-34964616

RESUMEN

We disclose herein an efficient regioselective B(3,4)-H activation via a ligand strategy, affording B(3)-monoacyloxylated and B(3,4)-diacyloxylated o-carboranes. The identification of amino acid and phosphoric acid ligands is crucial for the success of B(3)-mono- and B(3,4)-diacyloxylation, respectively. This ligand approach is compatible with a broad range of carboxylic acids. The functionalization of complex drug molecules is demonstrated. Other acyloxyl sources, including sodium benzoate, benzoic anhydride, and iodobenzene diacetate, are also tolerated.

6.
Int J Clin Pract ; 2022: 4763953, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36620481

RESUMEN

Objectives: The clinical and imaging features of asymptomatic carriers of severe acute respiratory syndrome coronavirus 2 and symptomatic COVID-19 patients. Methods: The clinical and chest computed tomography imaging data of 47 asymptomatic carriers and 36 symptomatic COVID-19 patients were derived. All patients underwent 4-6 CT scans over a period of 2-5 days. Results: The bulk of asymptomatic carriers who developed symptoms and most of the COVID-19 patients were older than 18 years of age with a decreased lymphocyte count, abnormal hepatic and renal function, and increased D-dimer and C-reactive protein. In the early stage, the pulmonary lesion involved mostly 1-2 lobes at the peripheral area in asymptomatic carriers but more than three lobes at both the central and peripheral areas in COVID-19 patients. In the progression stage, the lesion of asymptomatic carriers extended from the peripheral to the central area, and no significant difference was found in the lesion range compared with the symptomatic control group. In early improvement stage, the lesion was rapidly absorbed, and lesions were located primarily at the peripheral area in asymptomatic carriers; contrastingly, lesions were primarily located at both the central and peripheral areas in symptomatic patients. Asymptomatic carriers reflected a significantly shorter duration from disease onset to peak progression stage compared with the symptomatic. Conclusions: Asymptomatic carriers are a potential source of transmission and may become symptomatic COVID-19 patients despite indicating less severe pulmonary damage, earlier improvement, and better prognosis. Early isolation and intervention can eliminate such carriers as potential sources of transmission and improve their prognosis.


Asunto(s)
COVID-19 , Humanos , Estudios Retrospectivos , Pulmón/diagnóstico por imagen , SARS-CoV-2 , Proteína C-Reactiva
7.
Pak J Med Sci ; 37(3): 840-845, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34104175

RESUMEN

OBJECTIVE: To analyze the characteristics of chest high resolution computed tomography (CT) images of coronavirus disease 2019 (COVID-19). METHODS: This is a retrospective study analyzing the clinical records and chest high-resolution CT images of 46 consecutive patients who were diagnosed with COVID-19 by nucleic acid tests and treated at our hospitals between January 2020 and February 2020. RESULTS: Abnormalities in the CT images were found in 44 patients (95.6%). The lesions were unilateral in eight patients (17.4%), bilateral in 36 patients (78.3%), single in seven patients (15.9%), and multiple in 37 patients (84.1%). The morphology of the lesions was scattered opacity in 10 patients (21.7%), patchy opacity in 38 patients (82.6%), fibrotic cord in 17 patients (37.0%), and wedge-shaped opacity in two patients (4.3%). The lesions can be classified as ground-glass opacity in eight patients (17.4%), consolidation in one patient (2.2%), and ground-glass opacity plus consolidation in 28 patients (60.9%). CONCLUSION: Most COVID-19 patients showed abnormalities in chest CT images and the most common findings were ground-glass opacity plus consolidation.

8.
J Xray Sci Technol ; 28(3): 391-404, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32538893

RESUMEN

Recently, COVID-19 has spread in more than 100 countries and regions around the world, raising grave global concerns. COVID-19 transmits mainly through respiratory droplets and close contacts, causing cluster infections. The symptoms are dominantly fever, fatigue, and dry cough, and can be complicated with tiredness, sore throat, and headache. A few patients have symptoms such as stuffy nose, runny nose, and diarrhea. The severe disease can progress rapidly into the acute respiratory distress syndrome (ARDS). Reverse transcription polymerase chain reaction (RT-PCR) and Next-generation sequencing (NGS) are the gold standard for diagnosing COVID-19. Chest imaging is used for cross validation. Chest CT is highly recommended as the preferred imaging diagnosis method for COVID-19 due to its high density and high spatial resolution. The common CT manifestation of COVID-19 includes multiple segmental ground glass opacities (GGOs) distributed dominantly in extrapulmonary/subpleural zones and along bronchovascular bundles with crazy paving sign and interlobular septal thickening and consolidation. Pleural effusion or mediastinal lymphadenopathy is rarely seen. In CT imaging, COVID-19 manifests differently in its various stages including the early stage, the progression (consolidation) stage, and the absorption stage. In its early stage, it manifests as scattered flaky GGOs in various sizes, dominated by peripheral pulmonary zone/subpleural distributions. In the progression state, GGOs increase in number and/or size, and lung consolidations may become visible. The main manifestation in the absorption stage is interstitial change of both lungs, such as fibrous cords and reticular opacities. Differentiation between COVID-19 pneumonia and other viral pneumonias are also analyzed. Thus, CT examination can help reduce false negatives of nucleic acid tests.


Asunto(s)
Betacoronavirus/patogenicidad , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/patología , Pulmón/diagnóstico por imagen , Pulmón/patología , Neumonía Viral/diagnóstico , Neumonía Viral/patología , Tomografía Computarizada por Rayos X/métodos , COVID-19 , Infecciones por Coronavirus/complicaciones , Diagnóstico Diferencial , Progresión de la Enfermedad , Humanos , Pandemias , Derrame Pleural/etiología , Derrame Pleural/patología , Neumonía Viral/complicaciones , Reacción en Cadena en Tiempo Real de la Polimerasa , SARS-CoV-2
9.
Adv Mater ; : e2401856, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38529841

RESUMEN

Polymetallic phosphides exhibit favorable conductivities. A reasonable design of nano-metal-organic frame (MOF) composite morphologies and in situ introduction of polymetallic phosphides into the framework can effectively improve electrolyte penetration and rapid electron transfer. To address existing challenges, Ni, with a strong coordination ability with N, is introduced to partially replace Co in nano-Co-MOF composite. The hollow nanostructure is stabilized through CoNi bimetallic coordination and low-temperature controllable polymetallic phosphide generation rate. The Ni, Co, and P atoms, generated during reduction, effectively enhance electron transfer rate within the framework. X-ray absorption fine structure (XAFS) characterization results further confirm the existence of Ni-N, Ni-Ni, and Co-Co structures in the nanocomposite. The changes in each component during the charge-discharge process of the electrochemical reactions are investigated using in situ X-ray diffraction (XRD). Theoretical calculations further confirm that P can effectively improve conductivity. VZNPGC//MXene MSCs, constructed with active materials derived from the hollow nano MOF composites synthesized through the Ni2+ stabilization strategy, demonstrate a specific capacitance of 1184 mF cm-2, along with an energy density of 236.75 µWh cm-2 (power density of 0.14 mW cm-2). This approach introduces a new direction for the synthesis of highly conductive nano-MOF composites.

10.
Quant Imaging Med Surg ; 14(1): 1039-1060, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38223121

RESUMEN

Tuberculosis (TB) remains one of the major infectious diseases in the world with a high incidence rate. Drug-resistant tuberculosis (DR-TB) is a key and difficult challenge in the prevention and treatment of TB. Early, rapid, and accurate diagnosis of DR-TB is essential for selecting appropriate and personalized treatment and is an important means of reducing disease transmission and mortality. In recent years, imaging diagnosis of DR-TB has developed rapidly, but there is a lack of consistent understanding. To this end, the Infectious Disease Imaging Group, Infectious Disease Branch, Chinese Research Hospital Association; Infectious Diseases Group of Chinese Medical Association of Radiology; Digital Health Committee of China Association for the Promotion of Science and Technology Industrialization, and other organizations, formed a group of TB experts across China. The conglomerate then considered the Chinese and international diagnosis and treatment status of DR-TB, China's clinical practice, and evidence-based medicine on the methodological requirements of guidelines and standards. After repeated discussion, the expert consensus of imaging diagnosis of DR-PB was proposed. This consensus includes clinical diagnosis and classification of DR-TB, selection of etiology and imaging examination [mainly X-ray and computed tomography (CT)], imaging manifestations, diagnosis, and differential diagnosis. This expert consensus is expected to improve the understanding of the imaging changes of DR-TB, as a starting point for timely detection of suspected DR-TB patients, and can effectively improve the efficiency of clinical diagnosis and achieve the purpose of early diagnosis and treatment of DR-TB.

11.
Commun Biol ; 6(1): 189, 2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36806749

RESUMEN

Copy number variations (CNVs) have long been recognized as pathogenic factors for congenital heart disease (CHD). Few CHD associated CNVs could be interpreted as dosage effect due to disruption of coding sequences. Emerging evidences have highlighted the regulatory roles of long noncoding RNAs (lncRNAs) in cardiac development. Whereas it remains unexplored whether lncRNAs within CNVs (CNV-lncRNAs) could contribute to the etiology of CHD associated CNVs. Here we constructed coexpression networks involving CNV-lncRNAs within CHD associated CNVs and protein coding genes using the human organ developmental transcriptomic data, and showed that CNV-lncRNAs within 10 of the non-syndromic CHD associated CNVs clustered in the most significant heart correlated module, and had highly correlated coexpression with multiple key CHD genes. HSALNG0104472 within 15q11.2 region was identified as a hub CNV-lncRNA with heart-biased expression and validated experimentally. Our results indicated that HSALNG0104472 should be a main effector responsible for cardiac defects of 15q11.2 deletion through regulating cardiomyocytes differentiation. Our findings suggested that CNV-lncRNAs could potentially contribute to the pathologies of a maximum proportion of 68.4% (13/19) of non-syndromic CHD associated CNVs. These results indicated that explaining the pathogenesis of CHD associated CNVs should take account of the noncoding regions.


Asunto(s)
Cardiopatías Congénitas , ARN Largo no Codificante , Humanos , Variaciones en el Número de Copia de ADN , Cardiopatías Congénitas/genética , Corazón , Exones
12.
Commun Biol ; 6(1): 735, 2023 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-37460814

RESUMEN

Congenital anomalies of the kidney and urinary tract (CAKUT) are disorders resulting from defects in the development of the kidneys and their outflow tract. Copy number variations (CNVs) have been identified as important genetic variations leading to CAKUT, whereas most CAKUT-associated CNVs cannot be attributed to a specific pathogenic gene. Here we construct coexpression networks involving long noncoding RNAs (lncRNAs) within these CNVs (CNV-lncRNAs) using human kidney developmental transcriptomic data. The results show that CNV-lncRNAs encompassed in recurrent CAKUT associated CNVs have highly correlated expression with CAKUT genes in the developing kidneys. The regulatory effects of two hub CNV-lncRNAs (HSALNG0134318 in 22q11.2 and HSALNG0115943 in 17q12) in the module most significantly enriched in known CAKUT genes (CAKUT_sig1, P = 1.150 × 10-6) are validated experimentally. Our results indicate that the reduction of CNV-lncRNAs can downregulate CAKUT genes as predicted by our computational analyses. Furthermore, knockdown of HSALNG0134318 would downregulate HSALNG0115943 and affect kidney development related pathways. The results also indicate that the CAKUT_sig1 module has function significance involving multi-organ development. Overall, our findings suggest that CNV-lncRNAs play roles in regulating CAKUT genes, and the etiologies of CAKUT-associated CNVs should take account of effects on the noncoding genome.


Asunto(s)
ARN Largo no Codificante , Sistema Urinario , Humanos , Variaciones en el Número de Copia de ADN , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Sistema Urinario/anomalías , Riñón/metabolismo
13.
Curr Med Imaging ; 18(8): 869-875, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34819009

RESUMEN

INTRODUCTION: To investigate the Computed Tomography (CT) imaging characteristics and dynamic changes of COVID-19 pneumonia at different stages. METHODS: Forty-six patients infected with COVID-19 who had chest CT scans were enrolled, and CT scans were performed 4-6 times with an interval of 2-5 days. RESULTS: At the early stage (n=25), ground glass opacity was presented in 11 patients (11/25 or 44.0 %) and ground glass opacity mixed with consolidation in 13 (13/25 or 52.0 %) in the lung CT images. At the progressive stage (n=38), ground glass opacity was presented in only one patient (1/38 or 2.6 %) and ground glass opacity mixed with consolidation in 33 (33/38 or 86.8 %). In the early improvement stage (n=38), the imaging presentation was ground glass opacity alone in three patients (3/38 or 7.9 %) and ground glass opacity mixed with consolidation in 34 (34/38 or 89.5 %). In the late improvement (absorption) stage (n=33), the primary imaging presentation was ground glass presentation in eight patients (8/33 or 24.2 %) and ground glass opacity mixed with consolidation in 23 (23/33 or 69.7 %). The lesion reached the peak at 4-16 days after disease onset, and 26 (26/38 or 68.4 %) patients reached the disease peak within ten days. Starting from 6 to 20 days after onset, the disease began to be improved, with 30 (30/38 or 78.9 %) patients being improved within 15 days. CONCLUSION: COVID-19 pneumonia will progress to the peak stage at a mediate time of seven days and enter the improvement stage at twelve days. Computed tomography imaging of the pulmonary lesion has a common pattern from disease onset to improvement and recovery and provides important information for evaluation of the disease course and treatment effect.


Asunto(s)
COVID-19 , COVID-19/diagnóstico por imagen , Progresión de la Enfermedad , Humanos , Pulmón/diagnóstico por imagen , SARS-CoV-2 , Tomografía Computarizada por Rayos X/métodos
14.
Toxins (Basel) ; 12(5)2020 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-32344936

RESUMEN

To investigate pufferfish accumulation, elimination, and distribution of tetrodotoxin (TTX), Takifugu obscurus was fed with wild TTX-containing gastropod Nassarius semiplicata to simulate the natural food chain. Three-month-old non-poisonous T. obscurus was fed with wild toxic N. semiplicata at three exposure dose for 28 days, and later, with toxin-free food until day 67. Three fish individuals from each treatment were sampled, and the distribution of TTX in different tissues was measured. The results showed that the accumulation ratio of TTX in the three exposure dose groups ranged from 35.76% to 40.20%. The accumulation ratio in the skin and liver was the highest amongst all tissues, accounting for more than 85% of the total TTX, whereas that in the kidney and gallbladder was the lowest (0.11%-0.78%). Studies on the kinetic of TTX accumulation and elimination revealed that the skin was the tissue with the highest accumulation speed constant (8.06), while the liver, kidney, and intestinal tract showed the highest speed of TTX elimination. The time required for TTX reduction to reach the safety limit could be predicted by using standard elimination equations. Qualitative analysis by UPLC-MS/MS revealed the occurrence of seven TTX derivatives in T. obscurus; of these TTX, 5-deoxy TTX, 11-deoxy TTX, 4,9-anhydro TTX were found in all tested tissues.


Asunto(s)
Cadena Alimentaria , Contaminación de Alimentos , Gastrópodos , Tetraodontiformes/metabolismo , Tetrodotoxina/farmacocinética , Animales , Biotransformación , Carga Corporal (Radioterapia) , Cromatografía Líquida de Alta Presión , Tasa de Depuración Metabólica , Espectrometría de Masas en Tándem , Tetrodotoxina/metabolismo , Tetrodotoxina/toxicidad , Distribución Tisular
15.
Ital J Pediatr ; 46(1): 153, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-33054802

RESUMEN

BACKGROUND: Pediatric COVID-19 is relatively mild and may vary from that in adults. This study was to investigate the epidemic, clinical, and imaging features of pediatric COVID-19 pneumonia for early diagnosis and treatment. METHODS: Forty-one children infected with COVID-19 were analyzed in the epidemic, clinical and imaging data. RESULTS: Among 30 children with mild COVID-19, seven had no symptoms, fifteen had low or mediate fever, and eight presented with cough, nasal congestion, diarrhea, headache, or fatigue. Among eleven children with moderate COVID-19, nine presented with low or mediate fever, accompanied with cough and runny nose, and two had no symptoms. Significantly (P < 0.05) more children had a greater rate of cough in moderate than in mild COVID-19. Thirty children with mild COVID-19 were negative in pulmonary CT imaging, whereas eleven children with moderate COVID-19 had pulmonary lesions, including ground glass opacity in ten (90.9%), patches of high density in six (54.5%), consolidation in three (27.3%), and enlarged bronchovascular bundles in seven (63.6%). The lesions were distributed along the bronchus in five patients (45.5%). The lymph nodes were enlarged in the pulmonary hilum in two patients (18.2%). The lesions were presented in the right upper lobe in two patients (18.1%), right middle lobe in one (9.1%), right lower lobe in six (54.5%), left upper lobe in five (45.5%), and left lower lobe in eight (72.7%). CONCLUSIONS: Children with COVID-19 have mild or moderate clinical and imaging presentations. A better understanding of the clinical and CT imaging helps ascertaining those with negative nucleic acid and reducing misdiagnosis rate for those with atypical and concealed symptoms.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus/diagnóstico , Pulmón/diagnóstico por imagen , Pandemias , Neumonía Viral/diagnóstico , Tomografía Computarizada por Rayos X/métodos , Adolescente , COVID-19 , Niño , Preescolar , Infecciones por Coronavirus/epidemiología , Errores Diagnósticos , Femenino , Humanos , Lactante , Masculino , Neumonía Viral/epidemiología , SARS-CoV-2
16.
J Exp Med ; 217(12)2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-32880631

RESUMEN

Talaromyces marneffei causes life-threatening opportunistic infections, mainly in Southeast Asia and South China. T. marneffei mainly infects patients with human immunodeficiency virus (HIV) but also infects individuals without known immunosuppression. Here we investigated the involvement of anti-IFN-γ autoantibodies in severe T. marneffei infections in HIV-negative patients. We enrolled 58 HIV-negative adults with severe T. marneffei infections who were otherwise healthy. We found a high prevalence of neutralizing anti-IFN-γ autoantibodies (94.8%) in this cohort. The presence of anti-IFN-γ autoantibodies was strongly associated with HLA-DRB1*16:02 and -DQB1*05:02 alleles in these patients. We demonstrated that adult-onset acquired immunodeficiency due to autoantibodies against IFN-γ is the major cause of severe T. marneffei infections in HIV-negative patients in regions where this fungus is endemic. The high prevalence of anti-IFN-γ autoantibody-associated HLA class II DRB1*16:02 and DQB1*05:02 alleles may account for severe T. marneffei infections in Southeast Asia. Our findings clarify the pathogenesis of T. marneffei infection and pave the way for developing novel treatments.


Asunto(s)
Autoanticuerpos/inmunología , Interferón gamma/inmunología , Micosis/inmunología , Micosis/microbiología , Talaromyces/fisiología , Adulto , Anciano , Alelos , Autoanticuerpos/sangre , Estudios de Casos y Controles , Femenino , Cadenas HLA-DRB1/inmunología , Humanos , Masculino , Persona de Mediana Edad , Micosis/sangre , Adulto Joven
17.
Toxins (Basel) ; 11(2)2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30717167

RESUMEN

Domoic acid (DA) is a neurotoxin associated with amnesic shellfish poisoning (ASP). Though LC coupled to tandem mass spectrometry (LC-MS/MS) has become the preferred method for DA determination, traditional sample pretreatment is still labor-intensive. In this study, a simple, efficient and selective method for LC-MS/MS analysis of DA in shellfish was established by optimizing clean-up procedures on a self-assembly immunoaffinity column (IAC). Shellfish was extracted with 75% methanol twice and diluted with phosphate buffered saline (PBS, 1:2). The mixture was purified on IAC as follows: preconditioned with PBS, loaded with sample, washed by 50% MeOH, and eluted with MeOH containing 2% ammonium hydroxide. Concentrated analyte was monitored by multiple reaction monitoring (MRM) using electrospray (ESI) positive ion mode throughout the LC gradient elution. Based on the post-extraction addition method, matrix effects for various shellfish matrices were found to be less than 8%. The developed method was fully validated by choosing mussel as the representative matrix. The method had a limit of detection (LOD) of 0.02 µg·g-1, showed excellent linear correlation in the range of 0.05⁻40 µg·g-1, and obtained ideal recoveries (91⁻94%), intra-day RSDs (6⁻8%) and inter-day RSDs (3⁻6%). The method was successfully applied to DA determination in 59 shellfish samples, with a detection rate of 10% and contaminated content of 0.1⁻14.9 µg·g-1.


Asunto(s)
Bivalvos/química , Contaminación de Alimentos/análisis , Ácido Kaínico/análogos & derivados , Mariscos/análisis , Animales , China , Cromatografía Líquida de Alta Presión , Ácido Kaínico/análisis , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA