Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 543(7647): 705-709, 2017 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-28358094

RESUMEN

Millions of people die every year from diseases caused by exposure to outdoor air pollution. Some studies have estimated premature mortality related to local sources of air pollution, but local air quality can also be affected by atmospheric transport of pollution from distant sources. International trade is contributing to the globalization of emission and pollution as a result of the production of goods (and their associated emissions) in one region for consumption in another region. The effects of international trade on air pollutant emissions, air quality and health have been investigated regionally, but a combined, global assessment of the health impacts related to international trade and the transport of atmospheric air pollution is lacking. Here we combine four global models to estimate premature mortality caused by fine particulate matter (PM2.5) pollution as a result of atmospheric transport and the production and consumption of goods and services in different world regions. We find that, of the 3.45 million premature deaths related to PM2.5 pollution in 2007 worldwide, about 12 per cent (411,100 deaths) were related to air pollutants emitted in a region of the world other than that in which the death occurred, and about 22 per cent (762,400 deaths) were associated with goods and services produced in one region for consumption in another. For example, PM2.5 pollution produced in China in 2007 is linked to more than 64,800 premature deaths in regions other than China, including more than 3,100 premature deaths in western Europe and the USA; on the other hand, consumption in western Europe and the USA is linked to more than 108,600 premature deaths in China. Our results reveal that the transboundary health impacts of PM2.5 pollution associated with international trade are greater than those associated with long-distance atmospheric pollutant transport.


Asunto(s)
Contaminantes Atmosféricos/efectos adversos , Contaminación del Aire/efectos adversos , Contaminación del Aire/estadística & datos numéricos , Comercio/estadística & datos numéricos , Internacionalidad , Mortalidad Prematura , Material Particulado/efectos adversos , Contaminantes Atmosféricos/análisis , Atmósfera/química , China/epidemiología , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/estadística & datos numéricos , Europa (Continente)/epidemiología , Salud Global , Humanos , Material Particulado/análisis , Salud Pública , Estados Unidos/epidemiología , Viento
2.
Proc Natl Acad Sci U S A ; 117(49): 31018-31025, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33229579

RESUMEN

The Chinese "coal-to-gas" and "coal-to-electricity" strategies aim at reducing dispersed coal consumption and related air pollution by promoting the use of clean and low-carbon fuels in northern China. Here, we show that on top of meteorological influences, the effective emission mitigation measures achieved an average decrease of fine particulate matter (PM2.5) concentrations of ∼14% in Beijing and surrounding areas (the "2+26" pilot cities) in winter 2017 compared to the same period of 2016, where the dispersed coal control measures contributed ∼60% of the total PM2.5 reductions. However, the localized air quality improvement was accompanied by a contemporaneous ∼15% upsurge of PM2.5 concentrations over large areas in southern China. We find that the pollution transfer that resulted from a shift in emissions was of a high likelihood caused by a natural gas shortage in the south due to the coal-to-gas transition in the north. The overall shortage of natural gas greatly jeopardized the air quality benefits of the coal-to-gas strategy in winter 2017 and reflects structural challenges and potential threats in China's clean-energy transition.


Asunto(s)
Contaminación del Aire/análisis , Carbón Mineral/análisis , Gas Natural/análisis , Estaciones del Año , China , Ciudades , Política Ambiental , Calefacción , Material Particulado/análisis
3.
Opt Express ; 30(7): 12014-12025, 2022 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-35473131

RESUMEN

The combination of a digital micromirror device (DMD) lithography system and a rotatable polarizer provides a simple and convenient method to achieve the pixelated liquid crystal micropolarizer (LCMP) array for polarization imaging. In this paper, two crucial problems restricting the high-precision fabrication of LCMP array are pointed out and settled: the dislocation of LCMP pixels caused by parallelism error of the rotating polarizer and the grid defect caused by the gap between micromirrors. After correction, the maximum deviation of the fabricated LCMP pixels was reduced from 3.23 µm to 0.11 µm and the grid defect is eliminated. The correction method reported here lays a good foundation for the fine processing of liquid crystal devices with arbitrary photoalignment structure by using the DMD system.

4.
Opt Lett ; 46(6): 1377-1380, 2021 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-33720191

RESUMEN

In this paper, we propose spatiotemporal modulation projection lithography (STPL) technology, which is a spatiotemporal modulation technology applied to the conventional digital micromirror device (DMD) projection lithography system. Through coordinating the micro-movement of the piezoelectric stage, the flexible pattern generation of DMD, and the exposure time, the proposed STPL enables us to fabricate a microstructure with smooth edges, accurate linewidth, and accurate line position. Further application on fabricating a diffraction lens has been implemented. The edge sawtooth of the Fresnel zone plate fabricated by using the STPL is reduced to 0.3 µm, the error between the actual measured linewidth and the ideal linewidth is only within ±0.1µm, and the focal length is 15 mm, which is basically consistent with the designed focal length. These results indicated that STPL can serve a significant role in the micromanufacturing field for achieving high-fidelity microdevices.

5.
Environ Sci Technol ; 55(10): 6944-6956, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33945267

RESUMEN

China has implemented strong incentives to promote the market penetration of plug-in electric vehicles (PEVs). In this study, we compare the well-to-wheels (WTW) greenhouse gas (GHG) emission intensities of PEVs with those of gasoline vehicles at the provincial level in the year 2017 by considering the heterogeneity in the consumption-based electricity mix and climate impacts on vehicle fuel economy. Results show a high variation of provincial WTW GHG emission intensities for battery electric vehicles (BEVs, 22-293 g CO2eq/km) and plug-in hybrid electric vehicles (PHEVs, 82-298 g CO2eq/km) in contrast to gasoline internal combustion engine vehicles (ICEVs, 227-245 g CO2eq/km) and gasoline hybrid electric vehicles (HEVs, 141-164 g CO2eq/km). Due to the GHG-intensive coal-based electricity and cold weather, WTW GHG emission intensities of BEVs and PHEVs are higher than those of gasoline ICEVs in seven and ten northern provinces in China, respectively. WTW GHG emission intensities of gasoline HEVs, on the other hand, are lower in 18 and 26 provinces than those of BEVs and PHEVs, respectively. The analysis suggests that province-specific PEV and electric grid development policies should be considered for GHG emission reductions of on-road transportation in China.


Asunto(s)
Gasolina , Gases de Efecto Invernadero , China , Electricidad , Gasolina/análisis , Efecto Invernadero , Vehículos a Motor , Emisiones de Vehículos/análisis
6.
Appl Opt ; 60(29): 9074-9081, 2021 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-34623988

RESUMEN

The step-stitching issue occurring in digital micromirror device (DMD)-based step lithography, which refers to overlapping and misalignment, has dramatically influenced the overall accuracy of the exposed patterns. To address this technical challenge, this paper proposes a testing method to resolve the system tolerance parameters, inclination angle with 0.060∘±0.003∘, and magnification with 3.60399±0.00020, which induce the stitching problem. With these two parameters, a compensation strategy on motion is implemented to precisely control the step distance of the stage so that the edge-to-edge stitching error is reduced to about 0.150 µm and the corner-to-corner stitching error is less than 0.500 µm. The changes of the linewidth induced by the displacement error due to the stage control accuracy and illumination nonuniformity caused by the light source are simulated and analyzed, and the image preprocessing method based on a gradual grayscale mask is employed to improve the quality of stitching. Using this method, the linewidth difference is controlled to be within 0.150 µm. After finishing all the corrections and imaging preprocessing, the transverse error has become almost invisible, and the longitudinal error has been reduced by 97.72%. Experimental results demonstrate that the improved stitching accuracy could achieve high-fidelity devices.

7.
Geophys Res Lett ; 47(17): e2020GL089269, 2020 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-32904906

RESUMEN

TROPOMI satellite data show substantial drops in nitrogen dioxide (NO2) during COVID-19 physical distancing. To attribute NO2 changes to NO x emissions changes over short timescales, one must account for meteorology. We find that meteorological patterns were especially favorable for low NO2 in much of the United States in spring 2020, complicating comparisons with spring 2019. Meteorological variations between years can cause column NO2 differences of ~15% over monthly timescales. After accounting for solar angle and meteorological considerations, we calculate that NO2 drops ranged between 9.2% and 43.4% among 20 cities in North America, with a median of 21.6%. Of the studied cities, largest NO2 drops (>30%) were in San Jose, Los Angeles, and Toronto, and smallest drops (<12%) were in Miami, Minneapolis, and Dallas. These normalized NO2 changes can be used to highlight locations with greater activity changes and better understand the sources contributing to adverse air quality in each city.

8.
J Food Sci Technol ; 57(10): 3823-3835, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32904055

RESUMEN

Landraces and historical varieties are necessary germplasms for genetic improvement of modern cereals. Allelic variations at the Glu-1 and Glu-3 loci in 300 common wheat landraces and 43 historical varieties from Xinjiang, China, were evaluated by Sodium-dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and allele-specific molecular markers. Among the materials investigated, three, nine, and seven alleles were identified from the Glu-A1, Glu-B1, and Glu-D1 loci, respectively, and a total of 26 high-molecular-weight glutenin subunit (HMW-GS) combinations were found, of which 18 combinations were identified in landraces and historical varieties. Allelic frequency of HMW-GS combinations null, 7 + 8, 2 + 12 was found to be the highest in both the landraces (63.3%) and historical varieties (39.5%). Besides, some distinctive HMW-GS alleles, such as the novel Glu-B1 allele 6.1* + 8.1* and Glu-D1 alleles 2.6 + 12, 2.1 + 10.1, and 5** + 10 were observed in Xinjiang wheat landraces. Among the Glu-A3 and Glu-B3 loci of landraces and historical varieties, a total of eight and nine alleles were found, respectively. At each locus, two novel alleles were identified. A total of 33 low-molecular-weight glutenin subunit (LMW-GS) combinations of Glu-A3 and Glu-B3 were identified, with 31 and 14 combinations occurring in landraces and historical varieties, respectively, but only 10 combinations shared by both of them. As Glu-D1, Glu-A3, and Glu-B3 have highest contribution to the end-use quality and processing properties as compared to Glu-A1, Glu-B1, and Glu-D3 locus, the novel or distinctive HMW-GS and LMW-GS alleles in these loci could potentially be utilized for the improvement in the quality of modern wheat.

9.
Opt Express ; 27(22): 31956-31966, 2019 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-31684417

RESUMEN

A flexible and efficient strategy, digital micromirror devices (DMD) based multistep lithography (DMSL), is proposed to fabricate arrays of user-defined microstructures. Through the combination of dose modulation, flexible pattern generation of DMD, and high-resolution step movement of piezoelectrical stage (PZS), this method enables prototyping a board range of 2D lattices with periodic/nonperiodic spatial distribution and arbitrary shapes and the critical feature size is down to 600 nm. We further explore the use of DMSL to fabricate microlens array by combining with the thermal reflowing process. The square shape and hexagonal shape microlens with customized distribution are realized and characterized. The results indicate that the proposed DMSL can be a significant role in the microfabrication techniques for manufacturing functional microstructures array.

10.
Environ Sci Technol ; 53(11): 6556-6569, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31051076

RESUMEN

Using Greenhouse Gas Reporting Program data (GHGRP) and National Emissions Inventory data from 2014, we investigate U.S. refinery greenhouse gas (GHG) emissions (CO2, CH4, and N2O) and criteria air pollutant (CAP) emissions (VOC, CO, NO x, SO2, PM10, and PM2.5). The study derives (1) combustion emission factors (EFs) of refinery fuels (e.g., refinery catalyst coke and refinery combined gas), (2) U.S. refinery GHG emissions and CAP emissions per crude throughput at the national and regional levels, and (3) GHG and CAP emissions attributable to U.S. refinery products. The latter two emissions were further itemized by source: combustion emission, process emission, and facility-wide emission. We estimated U.S. refinery product GHG and CAP emissions via energy allocation at the refinery process unit level. The unit energy demand and unit flow information were adopted from the Petroleum Refinery Life Cycle Inventory Model (PRELIM version 1.1) by fitting individual U.S. refineries. This study fills an important information gap because it (1) evaluates refinery CAP emissions along with GHG emissions and (2) provides CAP and GHG emissions not only for refinery main products (gasoline, diesel, jet fuel, etc.) but also for refinery secondary products (asphalt, lubricant, wax, light olefins, etc.).


Asunto(s)
Gases de Efecto Invernadero , Petróleo , Gasolina , Efecto Invernadero
11.
Environ Sci Technol ; 53(12): 7103-7113, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31039312

RESUMEN

The global and U.S. domestic effort to develop a clean energy economy and curb environmental pollution incentivizes the use of hydrogen as a transportation fuel, owing to its zero tailpipe pollutant emissions and high fuel efficiency in fuel cell electric vehicles (FCEVs). However, the hydrogen production process is not emissions free. Conventional hydrogen production via steam methane reforming (SMR) is energy intensive, coproduces carbon dioxide, and emits air pollutants. Thus, it is necessary to quantify the environmental impacts of SMR hydrogen production alongside the use-phase of FCEVs. This study fills the information gap, analyzing the greenhouse gas (GHG) and criteria air pollutant (CAP) emissions associated with hydrogen production in U.S. SMR facilities by compiling and matching the facility-reported GHG and CAP emissions data with facilities' hydrogen production data. The actual amounts of hydrogen produced at U.S. SMR facilities are often confidential. Thus, we have developed four approaches to estimate the hydrogen production amounts. The resultant GHG and CAP emissions per MJ of hydrogen produced in individual facilities were aggregated to develop emission values for both a national median and a California state median. This study also investigates the breakdown of facility emissions into combustion emissions and noncombustion emissions.


Asunto(s)
Contaminantes Atmosféricos , Gases de Efecto Invernadero , California , Efecto Invernadero , Hidrógeno , Metano , Vapor
12.
Environ Sci Technol ; 53(21): 12594-12601, 2019 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-31601103

RESUMEN

The TROPOspheric Monitoring Instrument (TROPOMI) is used to derive top-down NOX emissions for two large power plants and three megacities in North America. We first re-process the vertical column NO2 with an improved air mass factor to correct for a known systematic low bias in the operational retrieval near urban centers. For the two power plants, top-down NOX emissions agree to within 10% of the emissions reported by the power plants. We then derive top-down NOX emissions rates for New York City, Chicago, and Toronto, and compare them to projected bottom-up emissions inventories. In this analysis of 2018 NOX emissions, we find a +22% overestimate for New York City, a -21% underestimate in Toronto, and good agreement in Chicago in the projected bottom-up inventories when compared to the top-down emissions. Top-down NOX emissions also capture intraseasonal variability, such as the weekday versus weekend effect (emissions are +45% larger on weekdays versus weekends in Chicago). Finally, we demonstrate the enhanced capabilities of TROPOMI, which allow us to derive a NOX emissions rate for Chicago using a single overpass on July 7, 2018. The large signal-to-noise ratio of TROPOMI is well-suited for estimating NOX emissions from relatively small sources and for sub-seasonal timeframes.


Asunto(s)
Contaminantes Atmosféricos , Chicago , Ciudades , Monitoreo del Ambiente , Ciudad de Nueva York , América del Norte , Centrales Eléctricas , Estados Unidos
13.
Environ Sci Technol ; 51(11): 5969-5977, 2017 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-28448134

RESUMEN

We estimate that a cumulative total of 1540 (1060-2800) Gg (gigagrams, 109 grams or thousand tonnes) of mercury (Hg) have been released by human activities up to 2010, 73% of which was released after 1850. Of this liberated Hg, 470 Gg were emitted directly into the atmosphere, and 74% of the air emissions were elemental Hg. Cumulatively, about 1070 Gg were released to land and water bodies. Though annual releases of Hg have been relatively stable since 1880 at 8 ± 2 Gg, except for wartime, the distributions of those releases among source types, world regions, and environmental media have changed dramatically. Production of Hg accounts for 27% of cumulative Hg releases to the environment, followed by silver production (24%) and chemicals manufacturing (12%). North America (30%), Europe (27%), and Asia (16%) have experienced the largest releases. Biogeochemical modeling shows a 3.2-fold increase in the atmospheric burden relative to 1850 and a contemporary atmospheric reservoir of 4.57 Gg, both of which agree well with observational constraints. We find that approximately 40% (390 Gg) of the Hg discarded to land and water must be sequestered at contaminated sites to maintain consistency with recent declines in atmospheric Hg concentrations.


Asunto(s)
Contaminantes Atmosféricos , Actividades Humanas , Mercurio , Asia , Atmósfera , Monitoreo del Ambiente , Europa (Continente) , Humanos , América del Norte
14.
Clin Invest Med ; 40(3): E102, 2017 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-28653611

RESUMEN

PURPOSE: This retrospective study evaluated the efficacy and safety of internal fixation (IF) in the treatment of pelvic fractures (PF). METHODS: A total of 263 unstable PF patients were treated from February 2009 to April 2015. Patients were divided into two groups according to type of fixation used to treat their PF: 136 cases received IF surgery (IF group); and, 127 cases received external fixation (EF) surgery (EF group). Postoperative follow-ups were conducted to record the clinical data, perioperative clinical indicators, Matta scores for fracture displacements, Majeed scores for hip functions and postoperative complications. RESULTS: Operation time, blood loss, the total length of the wound, postoperative fever rate, hospitalization time and complication rate for the IF group were significantly decreased in comparison with the EF group, while the ratings of pain, working and sitting ability and Matta and Majeed scores of the IF group were significantly higher than those of the EF group. CONCLUSION: IF was found to be associated with shorter operation times, less blood loss and better postoperative rehabilitation in comparison with EF, suggesting that it is an effective therapy for the treatment of unstable PF and will lead to restoration of normal pelvis functions.


Asunto(s)
Fracturas Óseas/cirugía , Huesos Pélvicos/cirugía , Adolescente , Adulto , Anciano , Pérdida de Sangre Quirúrgica , Fracturas Óseas/diagnóstico por imagen , Humanos , Persona de Mediana Edad , Huesos Pélvicos/diagnóstico por imagen , Estudios Retrospectivos , Resultado del Tratamiento , Adulto Joven
15.
Environ Sci Technol ; 49(8): 4868-77, 2015 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-25811601

RESUMEN

Organic aerosols (OAs) in the atmosphere affect Earth's energy budget by not only scattering but also absorbing solar radiation due to the presence of the so-called "brown carbon" (BrC) component. However, the absorptivities of OAs are not represented or are poorly represented in current climate and chemical transport models. In this study, we provide a method to constrain the BrC absorptivity at the emission inventory level using recent laboratory and field observations. We review available measurements of the light-absorbing primary OA (POA), and quantify the wavelength-dependent imaginary refractive indices (kOA, the fundamental optical parameter determining the particle's absorptivity) and their uncertainties for the bulk POA emitted from biomass/biofuel, lignite, propane, and oil combustion sources. In particular, we parametrize the kOA of biomass/biofuel combustion sources as a function of the black carbon (BC)-to-OA ratio, indicating that the absorptive properties of POA depend strongly on burning conditions. The derived fuel-type-based kOA profiles are incorporated into a global carbonaceous aerosol emission inventory, and the integrated kOA values of sectoral and total POA emissions are presented. Results of a simple radiative transfer model show that the POA absorptivity warms the atmosphere significantly and leads to ∼27% reduction in the amount of the net global average POA cooling compared to results from the nonabsorbing assumption.


Asunto(s)
Aerosoles/análisis , Aerosoles/química , Contaminantes Atmosféricos/química , Carbono/química , Atmósfera/química , Biocombustibles , Biomasa , Clima , Luz , Modelos Teóricos , Refractometría , Hollín/química
16.
Environ Sci Technol ; 48(22): 13060-8, 2014 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-25343705

RESUMEN

Epidemiologic and health impact studies are inhibited by the paucity of global, long-term measurements of the chemical composition of fine particulate matter. We inferred PM2.5 chemical composition at 0.1° × 0.1° spatial resolution for 2004-2008 by combining aerosol optical depth retrieved from the MODIS and MISR satellite instruments, with coincident profile and composition information from the GEOS-Chem global chemical transport model. Evaluation of the satellite-model PM2.5 composition data set with North American in situ measurements indicated significant spatial agreement for secondary inorganic aerosol, particulate organic mass, black carbon, mineral dust, and sea salt. We found that global population-weighted PM2.5 concentrations were dominated by particulate organic mass (11.9 ± 7.3 µg/m(3)), secondary inorganic aerosol (11.1 ± 5.0 µg/m(3)), and mineral dust (11.1 ± 7.9 µg/m(3)). Secondary inorganic PM2.5 concentrations exceeded 30 µg/m(3) over East China. Sensitivity simulations suggested that population-weighted ambient PM2.5 from biofuel burning (11 µg/m(3)) could be almost as large as from fossil fuel combustion sources (17 µg/m(3)). These estimates offer information about global population exposure to the chemical components and sources of PM2.5.


Asunto(s)
Exposición a Riesgos Ambientales/análisis , Material Particulado/análisis , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , China , Modelos Teóricos , América del Norte , Fenómenos Ópticos , Tamaño de la Partícula
17.
APMIS ; 132(6): 382-415, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38469726

RESUMEN

Rheumatoid arthritis (RA) is a multifaceted autoimmune disorder characterized by chronic inflammation and joint destruction. Recent research has elucidated the intricate interplay between gut microbiota and RA pathogenesis, underscoring the role of microbiota-derived metabolites as pivotal contributors to disease development and progression. The human gut microbiota, comprising a vast array of microorganisms and their metabolic byproducts, plays a crucial role in maintaining immune homeostasis. Dysbiosis of this microbial community has been linked to numerous autoimmune disorders, including RA. Microbiota-derived metabolites, such as short-chain fatty acids (SCFAs), tryptophan derivatives, Trimethylamine-N-oxide (TMAO), bile acids, peptidoglycan, and lipopolysaccharide (LPS), exhibit immunomodulatory properties that can either exacerbate or ameliorate inflammation in RA. Mechanistically, these metabolites influence immune cell differentiation, cytokine production, and gut barrier integrity, collectively shaping the autoimmune milieu. This review highlights recent advances in understanding the intricate crosstalk between microbiota metabolites and RA pathogenesis and also discusses the potential of specific metabolites to trigger or suppress autoimmunity, shedding light on their molecular interactions with immune cells and signaling pathways. Additionally, this review explores the translational aspects of microbiota metabolites as diagnostic and prognostic tools in RA. Furthermore, the challenges and prospects of translating these findings into clinical practice are critically examined.


Asunto(s)
Artritis Reumatoide , Biomarcadores , Disbiosis , Microbioma Gastrointestinal , Humanos , Artritis Reumatoide/microbiología , Artritis Reumatoide/inmunología , Artritis Reumatoide/metabolismo , Biomarcadores/metabolismo , Disbiosis/microbiología , Animales , Ácidos Grasos Volátiles/metabolismo
18.
Environ Sci Technol ; 47(24): 13993-4000, 2013 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-24274462

RESUMEN

Due to the rapid growth of electricity demand and the absence of regulations, sulfur dioxide (SO2) emissions from coal-fired power plants in India have increased notably in the past decade. In this study, we present the first interannual comparison of SO2 emissions and the satellite SO2 observations from the Ozone Monitoring Instrument (OMI) for Indian coal-fired power plants during the OMI era of 2005-2012. A detailed unit-based inventory is developed for the Indian coal-fired power sector, and results show that its SO2 emissions increased dramatically by 71% during 2005-2012. Using the oversampling technique, yearly high-resolution OMI maps for the whole domain of India are created, and they reveal a continuous increase in SO2 columns over India. Power plant regions with annual SO2 emissions greater than 50 Gg year(-1) produce statistically significant OMI signals, and a high correlation (R = 0.93) is found between SO2 emissions and OMI-observed SO2 burdens. Contrary to the decreasing trend of national mean SO2 concentrations reported by the Indian Government, both the total OMI-observed SO2 and annual average SO2 concentrations in coal-fired power plant regions increased by >60% during 2005-2012, implying the air quality monitoring network needs to be optimized to reflect the true SO2 situation in India.


Asunto(s)
Contaminantes Atmosféricos/análisis , Carbón Mineral , Monitoreo del Ambiente/instrumentación , Ozono/análisis , Centrales Eléctricas , Dióxido de Azufre/análisis , India
19.
Environ Sci Technol ; 47(16): 9102-8, 2013 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-23844635

RESUMEN

The limited understanding of black carbon (BC) aerosol emissions from incomplete combustion causes a poorly constrained anthropogenic climate warming that globally may be second only to CO2 and regionally, such as over East Asia, the dominant driver of climate change. The relative contribution to atmospheric BC from fossil fuel versus biomass combustion is important to constrain as fossil BC is a stronger climate forcer. The source apportionment is the underpinning for targeted mitigation actions. However, technology-based "bottom-up" emission inventories are inconclusive, largely due to uncertain BC emission factors from small-scale/household combustion and open burning. We use "top-down" radiocarbon measurements of atmospheric BC from five sites including three city sites and two regional sites to determine that fossil fuel combustion produces 80 ± 6% of the BC emitted from China. This source-diagnostic radiocarbon signal in the ambient aerosol over East Asia establishes a much larger role for fossil fuel combustion than suggested by all 15 BC emission inventory models, including one with monthly resolution. Our results suggest that current climate modeling should refine both BC emission strength and consider the stronger radiative absorption associated with fossil-fuel-derived BC. To mitigate near-term climate effects and improve air quality in East Asia, activities such as residential coal combustion and city traffic should be targeted.


Asunto(s)
Contaminación del Aire/análisis , Carbono/análisis , Aerosoles/análisis , Radioisótopos de Carbono/análisis , China , Ciencias Forenses
20.
J Environ Public Health ; 2023: 7571696, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36761245

RESUMEN

Objective: An increasing risk of developing osteoporosis which is characterized by bone production weakness and microarchitectural deterioration is found among postmenopausal women. MicroRNAs (miRNAs) are secreted into the circulation from cells of various tissues in response to local disease severity including bone diseases. Herein, we set out to identify candidate miRNAs predictable for osteoporosis incidence in postmenopausal elderly women. Methods: The circulating miRNA expression profiles deposited in the dataset accessioned as GSE201543 were downloaded from the GEO database. The study included 176 postmenopausal women who underwent BMD testing, including 96 women reporting osteoporosis and 70 women reporting normal BMD. All subjects were submitted their serum samples for measurements of bone metabolism markers. Results: The miRNA expression profiles of the GSE201543 dataset were differentially analyzed and found 97 miRNAs being upregulated concomitantly with 31 miRNAs being downregulated in the serum samples between osteoporotic postmenopausal women and postmenopausal women with normal BMD. Osteoporotic postmenopausal women were demonstrated with elevated serum levels of miR-340-5p and miR-506-3p when compared to normal postmenopausal women. Pearson correlation analysis demonstrated that circulating miR-340-5p and miR-506-3p expressions were increased as BAP, ß-CTx, and PINP levels increased, but osteocalcin and 25-(OH)VitD levels are declined in osteoporotic postmenopausal women. Results of the receiver operating characteristic (ROC) curve and the area under the ROC curve (AUC) showed circulating miR-340-5p and miR-506-3p expressions alone or combined together produced 0.843 AUC, 0.851 AUC, and 0.935 AUC, respectively, when used to predict the incidence of osteoporosis in postmenopausal women. Conclusion: Our work suggested that circulating miR-340-5p and miR-506-3p function as osteo-miRNAs in postmenopausal women and may serve as potential noninvasive biomarkers for the incidence of osteoporosis in postmenopausal women.


Asunto(s)
MicroARN Circulante , Osteoporosis , Anciano , Femenino , Humanos , Biomarcadores/sangre , Osteoporosis/genética , Posmenopausia/genética , MicroARN Circulante/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA