Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(51): 32464-32475, 2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33293420

RESUMEN

Epigenetics regulation plays a critical role in determining cell identity by controlling the accessibility of lineage-specific regulatory regions. In muscle stem cells, epigenetic mechanisms of how chromatin accessibility is modulated during cell fate determination are not fully understood. Here, we identified a long noncoding RNA, LncMyoD, that functions as a chromatin modulator for myogenic lineage determination and progression. The depletion of LncMyoD in muscle stem cells led to the down-regulation of myogenic genes and defects in myogenic differentiation. LncMyoD exclusively binds with MyoD and not with other myogenic regulatory factors and promotes transactivation of target genes. The mechanistic study revealed that loss of LncMyoD prevents the establishment of a permissive chromatin environment at myogenic E-box-containing regions, therefore restricting the binding of MyoD. Furthermore, the depletion of LncMyoD strongly impairs the reprogramming of fibroblasts into the myogenic lineage. Taken together, our study shows that LncMyoD associates with MyoD and promotes myogenic gene expression through modulating MyoD accessibility to chromatin, thereby regulating myogenic lineage determination and progression.


Asunto(s)
Cromatina/genética , ARN Largo no Codificante/genética , Células Satélite del Músculo Esquelético/fisiología , Animales , Diferenciación Celular/genética , Linaje de la Célula , Transdiferenciación Celular , Cromatina/metabolismo , Femenino , Fibroblastos/citología , Fibroblastos/fisiología , Regulación del Desarrollo de la Expresión Génica , Masculino , Ratones Endogámicos C57BL , Desarrollo de Músculos/fisiología , Proteína MioD/genética , Mioblastos/citología , Mioblastos/fisiología , Células Satélite del Músculo Esquelético/citología
2.
Dev Cell ; 58(15): 1383-1398.e6, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37321216

RESUMEN

Age-associated impairments in adult stem cell functions correlate with a decline in somatic tissue regeneration capacity. However, the mechanisms underlying the molecular regulation of adult stem cell aging remain elusive. Here, we provide a proteomic analysis of physiologically aged murine muscle stem cells (MuSCs), illustrating a pre-senescent proteomic signature. During aging, the mitochondrial proteome and activity are impaired in MuSCs. In addition, the inhibition of mitochondrial function results in cellular senescence. We identified an RNA-binding protein, CPEB4, downregulated in various aged tissues, which is required for MuSC functions. CPEB4 regulates the mitochondrial proteome and activity through mitochondrial translational control. MuSCs devoid of CPEB4 induced cellular senescence. Importantly, restoring CPEB4 expression rescued impaired mitochondrial metabolism, improved geriatric MuSC functions, and prevented cellular senescence in various human cell lines. Our findings provide the basis for the possibility that CPEB4 regulates mitochondrial metabolism to govern cellular senescence, with an implication of therapeutic intervention for age-related senescence.


Asunto(s)
Proteoma , Proteómica , Anciano , Animales , Humanos , Ratones , Envejecimiento/fisiología , Senescencia Celular , Músculo Esquelético/fisiología , Músculos , Proteínas de Unión al ARN
3.
Dev Cell ; 53(6): 661-676.e6, 2020 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-32502396

RESUMEN

Adult stem cells are essential for tissue regeneration. However, the mechanisms underlying the activation of quiescent adult stem cells remain elusive. Using skeletal muscle stem cells, also called satellite cells (SCs), we demonstrate prevalent intron retention (IR) in the transcriptome of quiescent SCs (QSCs). Intron-retained transcripts found in QSCs are essential for fundamental functions including RNA splicing, protein translation, cell-cycle entry, and lineage specification. Further analysis reveals that phosphorylated Dek protein modulates IR during SC quiescence exit. While Dek protein is absent in QSCs, Dek overexpression in vivo results in a global decrease of IR, quiescence dysregulation, premature differentiation of QSCs, and undermined muscle regeneration. Moreover, IR analysis on hundreds of public RNA-seq data show that IR is conserved among quiescent adult stem cells. Altogether, we illustrate IR as a conserved post-transcriptional regulation mechanism that plays an important role during stem cell quiescence exit.


Asunto(s)
Diferenciación Celular , Proteínas de Unión al ADN/metabolismo , Intrones , Proteínas Oncogénicas/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Procesamiento Postranscripcional del ARN , Células Satélite del Músculo Esquelético/metabolismo , Animales , Células Cultivadas , Proteínas de Unión al ADN/genética , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Proteínas Oncogénicas/genética , Proteínas de Unión a Poli-ADP-Ribosa/genética , Células Satélite del Músculo Esquelético/citología , Transcriptoma
4.
Toxicol Sci ; 146(1): 157-69, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25912033

RESUMEN

Transforming growth factor beta (TGF-ß) is crucial for transdifferentiation of hepatic stellate cells (HSCs) and the blunting of TGF-ß signaling in HSCs can effectively prevent liver fibrosis. Krüppel-like factor 11 (KLF11) is an early response transcription factor that potentiates TGF-ß/Smad signaling by suppressing the transcription of inhibitory Smad7. Using a mouse model of carbon tetrachloride (CCl4)-induced liver fibrosis, we observed significant upregulation of KLF11 in the activated HSCs during liver fibrogenesis. Meanwhile, the downregulation of miR-30 was observed in the HSCs isolated from fibrotic liver. Adenovirus-mediated ectopic expression of miR-30 was under the control of smooth muscle α-actin promoter, showing that the increase in miR-30 in HSC greatly reduced CCl4-induced liver fibrosis. Subsequent investigations showed that miR-30 suppressed KLF11 expression in HSC and led to a significant upregulation of Smad7 in vivo. Mechanistic studies further confirmed that KLF11 was the direct target of miR-30, and revealed that miR-30 blunted the profibrogenic TGF-ß signaling in HSC by suppressing KLF11 expression and thus enhanced the negative feedback loop of TGF-ß signaling imposed by Smad7. Finally, we demonstrated that miR-30 facilitated the reversal of activated HSC to a quiescent state as indicated by the inhibition of proliferation and migration, the loss of activation markers, and the gain of quiescent HSC markers. In conclusion, our results define miR-30 as a crucial suppressor of TGF-ß signaling in HSCs activation and provide useful insights into the mechanisms underlying liver fibrosis.


Asunto(s)
Intoxicación por Tetracloruro de Carbono/prevención & control , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Células Estrelladas Hepáticas/patología , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/prevención & control , MicroARNs/fisiología , Factor de Crecimiento Transformador beta/metabolismo , Animales , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA