Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Biol Reprod ; 107(1): 157-167, 2022 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-35554494

RESUMEN

Although hundreds of knockout mice show infertility as a major phenotype, the causative genic mutations of male infertility in humans remain rather limited. Here, we report the identification of a missense mutation (D136G) in the X-linked TAF7L gene as a potential cause of oligozoospermia in men. The human aspartate (D136) is evolutionally conserved across species, and its change to glycine (G) is predicted to be detrimental. Genetic complementation experiments in budding yeast demonstrate that the conserved aspartate or its analogous asparagine (N) residue in yeast TAF7 is essential for cell viability and thus its mutation to G is lethal. Although the corresponding D144G substitution in the mouse Taf7l gene does not affect male fertility, RNA-seq analyses reveal alterations in transcriptomic profiles in the Taf7l (D144G) mutant testes. These results support TAF7L mutation as a risk factor for oligozoospermia in humans.


Asunto(s)
Infertilidad Masculina , Oligospermia , Factores Asociados con la Proteína de Unión a TATA , Factor de Transcripción TFIID , Animales , Ácido Aspártico , Genes Ligados a X/genética , Humanos , Infertilidad Masculina/genética , Masculino , Ratones , Mutación , Mutación Missense , Oligospermia/genética , Factores Asociados con la Proteína de Unión a TATA/genética , Factor de Transcripción TFIID/genética
2.
Eukaryot Cell ; 11(6): 708-17, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22544903

RESUMEN

The regulation of Ace2 and morphogenesis (RAM) network is a protein kinase signaling pathway conserved among eukaryotes from yeasts to humans. Among fungi, the RAM network has been most extensively studied in the model yeast Saccharomyces cerevisiae and has been shown to regulate a range of cellular processes, including daughter cell-specific gene expression, cell cycle regulation, cell separation, mating, polarized growth, maintenance of cell wall integrity, and stress signaling. Increasing numbers of recent studies on the role of the RAM network in pathogenic fungal species have revealed that this network also plays an important role in the biology and pathogenesis of these organisms. In addition to providing a brief overview of the RAM network in S. cerevisiae, we summarize recent developments in the understanding of RAM network function in the human fungal pathogens Candida albicans, Candida glabrata, Cryptococcus neoformans, Aspergillus fumigatus, and Pneumocystis spp.


Asunto(s)
Proteínas Fúngicas/metabolismo , Hongos/enzimología , Morfogénesis , Proteínas Quinasas/metabolismo , Transducción de Señal , Proteínas de Unión al ADN/metabolismo , Hongos/crecimiento & desarrollo , Humanos , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo
3.
Eur J Cell Biol ; 102(2): 151333, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37327741

RESUMEN

Nuclear Dbf2-related (NDR) kinases are a subgroup of evolutionarily conserved AGC protein kinases that regulate various aspects of cell growth and morphogenesis. There are 4 NDR protein kinases in mammals, LATS1, LATS2 and STTK8/NDR1, STK38L/NDR2 protein kinases. LATS1 and 2 are core components of the well-studied Hippo pathway, which play a critical role in the regulation of cell proliferation, differentiation, and cell migration via YAP/TAZ transcription factor. The Hippo pathways play an important role in nervous tissue development and homeostasis, especially with regard to the central nervous system (CNS) and the ocular system. The ocular system is a very complex system generated by the interaction in a very tightly coordinated manner of numerous and diverse developing tissues, such as, but not limited to choroidal and retinal blood vessels, the retinal pigmented epithelium and the retina, a highly polarized neuronal tissue. The retina development and maintenance require precise and coordinated regulation of cell proliferation, cell death, migration, morphogenesis, synaptic connectivity, and balanced homeostasis. This review highlights the emerging roles of NDR1 and NDR2 kinases in the regulation of retinal/neuronal function and homeostasis via a noncanonical branch of the Hippo pathway. We highlight a potential role of NDR1 and NDR2 kinases in regulating neuronal inflammation and as potential therapeutic targets for the treatment of neuronal diseases.


Asunto(s)
Neurobiología , Proteínas Quinasas , Animales , Proteínas Serina-Treonina Quinasas/metabolismo , Proliferación Celular , Diferenciación Celular , Sistema Nervioso Central/metabolismo , Mamíferos/metabolismo
4.
Mol Microbiol ; 81(3): 831-49, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21762218

RESUMEN

Mechanisms that control mRNA metabolism are critical for cell function, development and stress response. The Saccharomyces cerevisiae mRNA-binding protein Ssd1 has been implicated in mRNA processing, ageing, stress response and maintenance of cell integrity. Ssd1 is a substrate of the LATS/NDR tumour suppressor orthologue Cbk1 kinase. Previous data indicate that Ssd1 localizes to the cytoplasm; however, biochemical interactions suggest that Ssd1 at least transiently localizes to the nucleus. We therefore explored whether nuclear localization is important for Ssd1 cytoplasmic functions. We identified a functional NLS in the N-terminal domain of Ssd1. An Ssd1-derived NLS-GFP fusion protein and several C-terminally truncated Ssd1 proteins, which presumably lack nuclear export sequences, accumulate in the nucleus. Alanine substitution of the Ssd1 NLS prevents Ssd1 nuclear entry, mRNA binding and disrupts Srl1 mRNA localization. Moreover, Ssd1-NLS mutations abolish Ssd1 toxicity in the absence of Cbk1 phosphorylation and cause Ssd1 to localize prominently to cytoplasmic puncta. These data indicate that nuclear shuttling is critical for Ssd1 mRNA binding and Ssd1-mRNA localization in the cytoplasm. Collectively these data support the model that Ssd1 functions analogously to hnRNPs, which bind mRNA co-transcriptionally, are exported to the cytoplasm and target mRNAs to sites of localized translation and P-bodies.


Asunto(s)
Núcleo Celular/metabolismo , Citoplasma/metabolismo , Regulación Fúngica de la Expresión Génica , ARN Mensajero/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transporte Activo de Núcleo Celular , Fusión Artificial Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Modelos Biológicos , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Señales de Localización Nuclear , Proteínas de Saccharomyces cerevisiae/genética , Eliminación de Secuencia
5.
J Cell Biol ; 158(5): 885-900, 2002 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-12196508

RESUMEN

The Saccharomyces cerevisiae mitotic exit network (MEN) is a conserved signaling network that coordinates events associated with the M to G1 transition. We investigated the function of two S. cerevisiae proteins related to the MEN proteins Mob1p and Dbf2p kinase. Previous work indicates that cells lacking the Dbf2p-related protein Cbk1p fail to sustain polarized growth during early bud morphogenesis and mating projection formation (Bidlingmaier, S., E.L. Weiss, C. Seidel, D.G. Drubin, and M. Snyder. 2001. Mol. Cell. Biol. 21:2449-2462). Cbk1p is also required for Ace2p-dependent transcription of genes involved in mother/daughter separation after cytokinesis. Here we show that the Mob1p-related protein Mob2p physically associates with Cbk1p kinase throughout the cell cycle and is required for full Cbk1p kinase activity, which is periodically activated during polarized growth and mitosis. Both Mob2p and Cbk1p localize interdependently to the bud cortex during polarized growth and to the bud neck and daughter cell nucleus during late mitosis. We found that Ace2p is restricted to daughter cell nuclei via a novel mechanism requiring Mob2p, Cbk1p, and a functional nuclear export pathway. Furthermore, nuclear localization of Mob2p and Ace2p does not occur in mob1-77 or cdc14-1 mutants, which are defective in MEN signaling, even when cell cycle arrest is bypassed. Collectively, these data indicate that Mob2p-Cbk1p functions to (a) maintain polarized cell growth, (b) prevent the nuclear export of Ace2p from the daughter cell nucleus after mitotic exit, and (c) coordinate Ace2p-dependent transcription with MEN activation. These findings may implicate related proteins in linking the regulation of cell morphology and cell cycle transitions with cell fate determination and development.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Polaridad Celular , Proteínas de Unión al ADN/metabolismo , Proteínas Fúngicas/metabolismo , Mitosis , Fosfoproteínas/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Transporte Activo de Núcleo Celular , División Celular , Núcleo Celular/metabolismo , Histonas/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Sustancias Macromoleculares , Morfogénesis , Unión Proteica , Proteínas Serina-Treonina Quinasas , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
J Vis Exp ; (149)2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31305516

RESUMEN

Preparation of high-quality mouse eye sections for immunohistochemistry (IHC) is critical for assessing the retinal structure and function and for determining the mechanisms underlying retinal diseases. Maintaining structural integrity throughout the tissue preparation is vital for obtaining reproducible retinal IHC data but can be challenging due to the fragility and complexity of retinal cytoarchitecture. Strong fixatives like 10% formalin or Bouin's solution optimally preserve the retinal structure, they often impede IHC analysis by enhancing the background fluorescence and/or diminishing antibody-epitope interactions, a process known as epitope masking. Milder fixatives, on the other hand, like 4% paraformaldehyde, reduces background fluorescence and epitope-masking, meticulous dissection techniques must be utilized to preserve the retinal structure. In this article, we present a comprehensive method to prepare mouse ocular posterior cups for IHC that is sufficient to preserve most antibody-epitope interactions without loss of retinal structural integrity. We include representative IHC with antibodies to various retinal cell type markers to illustrate tissue preservation and orientation under optimal and sub-optimal conditions. Our goal is to optimize IHC studies of the retina by providing a complete protocol from ocular posterior cup dissection to IHC.


Asunto(s)
Crioultramicrotomía , Retina/citología , Animales , Disección , Inmunohistoquímica , Ratones Endogámicos C57BL , Adhesión en Parafina , Coloración y Etiquetado
7.
Mol Cancer Res ; 5(12): 1304-11, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18171988

RESUMEN

A molecular pathway homologous to the S. cerevisiae mitotic exit network (MEN) and S. pombe septation initiation network has recently been described in higher eukaryotes and involves the tumor suppressor kinase LATS1 and its subunit MOB1A. The yeast MEN/septation initiation network pathways are regulated by the ubiquitin ligase defective in mitotic arrest 1 (Dma1p), a checkpoint protein that helps maintain prometaphase arrest when cells are exposed to microtubule poisons. We identified here the RING domain protein ring finger 8 (RNF8) as the human orthologue of the yeast protein Dma1p. Like its yeast counterparts, human DMA1/RNF8 localized at the midbody and its depletion by siRNA compromised mitotic arrest of nocodazole-treated cells in a manner dependent on the MEN. Depletion of MAD2, a spindle checkpoint protein, also compromised mitotic arrest, but in a MEN-independent manner. Thus, two distinct checkpoint pathways maintain mitotic arrest in cells exposed to microtubule poisons.


Asunto(s)
Proteínas de Unión al ADN/genética , Genes cdc , Mitosis/genética , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/genética , Línea Celular Tumoral , Ciclina A/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Células HeLa , Humanos , Datos de Secuencia Molecular , Osteosarcoma , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Schizosaccharomyces pombe/genética , Ubiquitina-Proteína Ligasas
8.
Mol Biol Cell ; 16(12): 5465-79, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16176976

RESUMEN

The Saccharomyces cerevisiae mitotic exit network (MEN) is a conserved signaling network that coordinates CDK inactivation, cytokinesis and G1 gene transcription. The MEN Cdc14p phosphatase is sequestered in the nucleolus and transiently released in early anaphase and telophase. Cdc14p mediates mitotic exit by dephosphorylating Cdk1p substrates and promoting Cdk1p inactivation. Cdc14p also regulates the localization of chromosomal passenger proteins, which redistribute from kinetochores to the mitotic spindle during anaphase. Here we present evidence that the MEN protein kinase complex Mob1p-Dbf2p localizes to mitotic nuclei and partially colocalizes with Cdc14p and kinetochore proteins. Chromatin immunoprecipitation (ChIP) experiments reveal that Mob1p, Dbf2p, and Cdc14p associate with centromere DNA and require the centromere binding protein Ndc10p for this association. We establish that Mob1p is essential for maintaining the localization of Aurora, INCENP, and Survivin chromosomal passenger proteins on anaphase spindles, whereas Cdc14p and the Mob1p-Dbf2p-activating kinase Cdc15p are required for establishing passenger protein localization on the spindle. Moreover, Mob1p, but not Cdc15p, is required for dissociating Aurora from the kinetochore region. These findings reveal kinetochores as sites for MEN signaling and implicate MEN in coordinating chromosome segregation and/or spindle integrity with mitotic exit and cytokinesis via regulation of chromosome passenger proteins.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiología , Núcleo Celular/enzimología , Mitosis/fisiología , Fosfoproteínas/metabolismo , Proteínas Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/fisiología , Huso Acromático/fisiología , Núcleo Celular/ultraestructura , Cromatina/fisiología , Cromatina/ultraestructura , Genes Reporteros , Cinetocoros/metabolismo , Proteínas Serina-Treonina Quinasas , Proteínas Tirosina Fosfatasas/metabolismo , Transcripción Genética , Transfección
9.
Sci Rep ; 8(1): 12544, 2018 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-30135513

RESUMEN

Ndr2/Stk38l encodes a protein kinase associated with the Hippo tumor suppressor pathway and is mutated in a naturally-occurring canine early retinal degeneration (erd). To elucidate the retinal functions of Ndr2 and its paralog Ndr1/Stk38, we generated Ndr1 and Ndr2 single knockout mice. Although retinal lamination appeared normal in these mice, Ndr deletion caused a subset of Pax6-positive amacrine cells to proliferate in differentiated retinas, while concurrently decreasing the number of GABAergic, HuD and Pax6-positive amacrine cells. Retinal transcriptome analyses revealed that Ndr2 deletion increased expression of neuronal stress genes and decreased expression of synaptic organization genes. Consistent with the latter, Ndr deletion dramatically reduced levels of Aak1, an Ndr substrate that regulates vesicle trafficking. Our findings indicate that Ndr kinases are important regulators of amacrine and photoreceptor cells and suggest that Ndr kinases inhibit the proliferation of a subset of terminally differentiated cells and modulate interneuron synapse function via Aak1.


Asunto(s)
Interneuronas/citología , Interneuronas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Retina/citología , Células Amacrinas/citología , Animales , Proliferación Celular , Proteína 4 Similar a ELAV/metabolismo , Regulación de la Expresión Génica , Homeostasis , Ratones Endogámicos C57BL , Ratones Noqueados , Factor de Transcripción PAX6/metabolismo , Células Fotorreceptoras/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Retina/metabolismo , Células Bipolares de la Retina/citología , Células Bipolares de la Retina/metabolismo
10.
Mol Biol Cell ; 14(9): 3782-803, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12972564

RESUMEN

In Saccharomyces cerevisiae, polarized morphogenesis is critical for bud site selection, bud development, and cell separation. The latter is mediated by Ace2p transcription factor, which controls the daughter cell-specific expression of cell separation genes. Recently, a set of proteins that include Cbk1p kinase, its binding partner Mob2p, Tao3p (Pag1p), and Hym1p were shown to regulate both Ace2p activity and cellular morphogenesis. These proteins seem to form a signaling network, which we designate RAM for regulation of Ace2p activity and cellular morphogenesis. To find additional RAM components, we conducted genetic screens for bilateral mating and cell separation mutants and identified alleles of the PAK-related kinase Kic1p in addition to Cbk1p, Mob2p, Tao3p, and Hym1p. Deletion of each RAM gene resulted in a loss of Ace2p function and caused cell polarity defects that were distinct from formin or polarisome mutants. Two-hybrid and coimmunoprecipitation experiments reveal a complex network of interactions among the RAM proteins, including Cbk1p-Cbk1p, Cbk1p-Kic1p, Kic1p-Tao3p, and Kic1p-Hym1p interactions, in addition to the previously documented Cbk1p-Mob2p and Cbk1p-Tao3p interactions. We also identified a novel leucine-rich repeat-containing protein Sog2p that interacts with Hym1p and Kic1p. Cells lacking Sog2p exhibited the characteristic cell separation and cell morphology defects associated with perturbation in RAM signaling. Each RAM protein localized to cortical sites of growth during both budding and mating pheromone response. Hym1p was Kic1p- and Sog2p-dependent and Sog2p and Kic1p were interdependent for localization, indicating a close functional relationship between these proteins. Only Mob2p and Cbk1p were detectable in the daughter cell nucleus at the end of mitosis. The nuclear localization and kinase activity of the Mob2p-Cbk1p complex were dependent on all other RAM proteins, suggesting that Mob2p-Cbk1p functions late in the RAM network. Our data suggest that the functional architecture of RAM signaling is similar to the S. cerevisiae mitotic exit network and Schizosaccharomyces pombe septation initiation network and is likely conserved among eukaryotes.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas Fúngicas/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Factores de Transcripción/metabolismo , Polaridad Celular/genética , Polaridad Celular/fisiología , Pruebas Genéticas , Péptidos y Proteínas de Señalización Intracelular , Modelos Moleculares , Morfogénesis/genética , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas Serina-Treonina Quinasas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología , Activación Transcripcional , Técnicas del Sistema de Dos Híbridos
11.
Cancer Res ; 65(15): 6568-75, 2005 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-16061636

RESUMEN

The kinase LATS/WARTS is a tumor suppressor protein conserved in evolution, but its function at the molecular level is not well understood. We report here that human LATS1 interacts with MOB1A, a protein whose homologue in budding yeast associates with kinases involved in mitotic exit. This suggested that LATS1 may be a component of the previously uncharacterized mitotic exit network in higher eukaryotes. Indeed, moderate overexpression of human LATS1 in cells exposed to microtubule poisons facilitated mitotic exit, and this activity required MOB1A. Reciprocally, small interfering RNA-mediated suppression of LATS1 or MOB1A prolonged telophase, but had no effect on the length of the earlier phases of mitosis. A role of LATS1 in mitotic exit may explain its previously described abilities to induce G2 arrest and promote cytokinesis.


Asunto(s)
Mitosis/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Adaptadoras Transductoras de Señales , Secuencia de Aminoácidos , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Centrosoma/metabolismo , Células HeLa , Humanos , Datos de Secuencia Molecular , Osteosarcoma/enzimología , Osteosarcoma/patología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Telofase/fisiología , Transfección
12.
Genetics ; 171(2): 443-55, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15972461

RESUMEN

Saccharomyces cerevisiae RAM is a conserved signaling network that regulates maintenance of polarized growth and daughter-cell-specific transcription, the latter of which is critical for septum degradation. Consequently, cells defective in RAM function (designated ramDelta) are round in morphology, form feeble mating projections, and fail to separate following cytokinesis. It was recently demonstrated that RAM genes are essential in strains containing functional SSD1 (SSD1-v), which encodes a protein of unknown function that binds the RAM Cbk1p kinase. Here we investigated the essential function of RAM in SSD1-v strains and identified two functional groups of dosage suppressors for ramDelta lethality. We establish that all ramDelta mutants exhibit cell integrity defects and cell lysis. All dosage suppressors rescue the lysis but not the cell polarity or cell separation defects of ramDelta cells. One class of dosage suppressors is composed of genes encoding cell wall proteins, indicating that alterations in cell wall structure can rescue the cell lysis in ramDelta cells. Another class of ramDelta dosage suppressors is composed of ZRG8 and SRL1, which encode two unrelated proteins of unknown function. We establish that ZRG8 and SRL1 share similar genetic interactions and phenotypes. Significantly, Zrg8p coprecipitates with Ssd1p, localizes similarly to RAM proteins, and is dependent on RAM for localization. Collectively, these data indicate that RAM and Ssd1p function cooperatively to control cell integrity and suggest that Zrg8p and Srl1p function as nonessential inhibitors of Ssd1p.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas de Unión al ADN/metabolismo , Morfogénesis/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Transducción de Señal/genética , Factores de Transcripción/metabolismo , Polaridad Celular/genética , Pared Celular/genética , Proteínas de Unión al ADN/genética , Immunoblotting , Inmunoprecipitación , Microscopía Fluorescente , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética
13.
Structure ; 11(9): 1163-70, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12962634

RESUMEN

The Mob protein family comprises a group of highly conserved eukaryotic proteins whose founding member functions in the mitotic exit network. At the molecular level, Mob proteins act as kinase-activating subunits. We cloned a human Mob1 family member, Mob1A, and determined its three-dimensional structure by X-ray crystallography. The core of Mob1A consists of a four-helix bundle that is stabilized by a bound zinc atom. The N-terminal helix of the bundle is solvent exposed and together with adjacent secondary structure elements forms an evolutionarily conserved surface with a strong negative electrostatic potential. Several conditional mutant alleles of S. cerevisiae MOB1 target this surface and decrease its net negative charge. Interestingly, the kinases with which yeast Mob proteins interact have two conserved basic regions within their N-terminal lobe. Thus, Mob proteins may regulate their target kinases through electrostatic interactions mediated by conserved charged surfaces.


Asunto(s)
Ciclo Celular , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cristalografía por Rayos X , Humanos , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Proteínas del Tejido Nervioso/genética , Fosfoproteínas/química , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Conformación Proteica , Mapeo de Interacción de Proteínas , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Transferasas (Grupos de Otros Fosfatos Sustitutos)
14.
J Cell Biol ; 202(1): 97-111, 2013 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-23836930

RESUMEN

The rate of eukaryotic cell growth is tightly controlled for proper progression through each cell cycle stage and is important for cell size homeostasis. It was previously shown that cell growth is inhibited during mitosis when cells are preparing for division. However, the mechanism for growth arrest at this stage is unknown. Here we demonstrate that exocytosis of a select group of cargoes was inhibited before the metaphase-anaphase transition in the budding yeast Saccharomyces cerevisiae. The cyclin-dependent kinase, Cdk1, when bound to the mitotic cyclin Clb2, directly phosphorylated Exo84, a component of the exocyst complex essential for exocytosis. Mitotic phosphorylation of Exo84 disrupted the assembly of the exocyst complex, thereby affecting exocytosis and cell surface expansion. Our study demonstrates the coordination between membrane trafficking and cell cycle progression and provides a molecular mechanism by which cell growth is controlled during the cell division cycle.


Asunto(s)
Puntos de Control del Ciclo Celular , Exocitosis , Proteínas de la Membrana/metabolismo , Mitosis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Proteína Quinasa CDC2/genética , Proteína Quinasa CDC2/metabolismo , Forma del Núcleo Celular , Ciclina B/genética , Ciclina B/metabolismo , Glucano Endo-1,3-beta-D-Glucosidasa/genética , Glucano Endo-1,3-beta-D-Glucosidasa/metabolismo , Inmunoprecipitación , Proteínas de la Membrana/genética , Mutación , Fosforilación , Unión Proteica , Mapeo de Interacción de Proteínas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Tiempo
15.
J Cell Biol ; 192(4): 583-98, 2011 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-21339329

RESUMEN

The mRNA-binding protein Ssd1 is a substrate for the Saccharomyces cerevisiae LATS/NDR orthologue Cbk1, which controls polarized growth, cell separation, and cell integrity. We discovered that most Ssd1 localizes diffusely within the cytoplasm, but some transiently accumulates at sites of polarized growth. Cbk1 inhibition and cellular stress cause Ssd1 to redistribute to mRNA processing bodies (P-bodies) and stress granules, which are known to repress translation. Ssd1 recruitment to P-bodies is independent of mRNA binding and is promoted by the removal of Cbk1 phosphorylation sites. SSD1 deletion severely impairs the asymmetric localization of the Ssd1-associated mRNA, SRL1. Expression of phosphomimetic Ssd1 promotes polarized localization of SRL1 mRNA, whereas phosphorylation-deficient Ssd1 causes constitutive localization of SRL1 mRNA to P-bodies and causes cellular lysis. These data support the model that Cbk1-mediated phosphorylation of Ssd1 promotes the cortical localization of Ssd1-mRNA complexes, whereas Cbk1 inhibition, cellular stress, and Ssd1 dephosphorylation promote Ssd1-mRNA interactions with P-bodies and stress granules, leading to translational repression.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , ARN Mensajero/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiología , Saccharomyces cerevisiae/metabolismo , Sitios de Unión , Aumento de la Célula , Polaridad Celular , Citoplasma/metabolismo , Eliminación de Gen , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Mensajero/análisis , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
16.
Mol Biol Cell ; 22(24): 4892-907, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22031291

RESUMEN

Saccharomyces cerevisiae Cbk1 kinase is a LATS/NDR tumor suppressor orthologue and component of the Regulation of Ace2 and Morphogenesis signaling network. Cbk1 was previously implicated in regulating polarized morphogenesis, gene expression, and cell integrity. Here we establish that Cbk1 is critical for heat shock and cell wall stress signaling via Bck2, a protein associated with the Pkc1-Mpk1 cell integrity pathway. We demonstrate that cbk1 and bck2 loss-of-function mutations prevent Mpk1 kinase activation and Mpk1-dependent gene expression but do not disrupt Mpk1 Thr-190/Tyr-192 phosphorylation. Bck2 overexpression partially restores Mpk1-dependent Rlm1 transcription factor activity in cbk1 mutants, suggesting that Bck2 functions downstream of Cbk1. We demonstrate that Bck2 precisely colocalizes with the mitogen-activated protein kinase (MAPK) phosphatase Sdp1. During heat shock, Bck2 and Sdp1 transiently redistribute from nuclei and the cytosol to mitochondria and other cytoplasmic puncta before returning to their pre-stressed localization patterns. Significantly, Cbk1 inhibition delays the return of Bck2 and Sdp1 to their pre-stressed localization patterns and delays Mpk1 Thr-190/Tyr-192 dephosphorylation upon heat shock adaptation. We conclude that Cbk1 and Bck2 are required for Mpk1 activation during heat shock and cell wall stress and for Mpk1 dephosphorylation during heat shock adaptation. These data provide the first evidence that Cbk1 kinase regulates MAPK-dependent stress signaling and provide mechanistic insight into Sdp1 phosphatase regulation.


Asunto(s)
Respuesta al Choque Térmico/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Quinasas Activadas por Mitógenos/biosíntesis , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fosfatasas de Especificidad Dual/genética , Fosfatasas de Especificidad Dual/metabolismo , Activación Enzimática/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Regulación Fúngica de la Expresión Génica/fisiología , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Quinasas Activadas por Mitógenos/genética , Fosforilación/fisiología , Proteínas Serina-Treonina Quinasas/genética , Proteínas de Saccharomyces cerevisiae/genética
17.
Mol Biol Cell ; 19(12): 5559-78, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18843045

RESUMEN

Saccharomyces cerevisiae Cbk1 is a LATS/Ndr protein kinase and a downstream component of the regulation of Ace2 and morphogenesis (RAM) signaling network. Cbk1 and the RAM network are required for cellular morphogenesis, cell separation, and maintenance of cell integrity. Here, we examine the phenotypes of conditional cbk1 mutants to determine the essential function of Cbk1. Cbk1 inhibition severely disrupts growth and protein secretion, and triggers the Swe1-dependent morphogenesis checkpoint. Cbk1 inhibition also delays the polarity establishment of the exocytosis regulators Rab-GTPase Sec4 and its exchange factor Sec2, but it does not interfere with actin polarity establishment. Cbk1 binds to and phosphorylates Sec2, suggesting that it regulates Sec4-dependent exocytosis. Intriguingly, Cbk1 inhibition causes a >30% decrease in post-Golgi vesicle accumulation in late secretion mutants, indicating that Cbk1 also functions upstream of Sec2-Sec4, perhaps at the level of the Golgi. In agreement, conditional cbk1 mutants mislocalize the cis-Golgi mannosyltransferase Och1, are hypersensitive to the aminoglycoside hygromycin B, and exhibit diminished invertase and Sim1 glycosylation. Significantly, the conditional lethality and hygromycin B sensitivity of cbk1 mutants are suppressed by moderate overexpression of several Golgi mannosyltransferases. These data suggest that an important function for Cbk1 and the RAM signaling network is to regulate growth and secretion via Golgi and Sec2/Sec4-dependent processes.


Asunto(s)
Proteínas Fúngicas/metabolismo , Aparato de Golgi/metabolismo , Saccharomyces cerevisiae , Antihelmínticos/metabolismo , Ciclo Celular/fisiología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Polaridad Celular , Citoesqueleto/metabolismo , Colorantes Fluorescentes/metabolismo , Proteínas Fúngicas/antagonistas & inhibidores , Proteínas Fúngicas/genética , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Glucano Endo-1,3-beta-D-Glucosidasa/genética , Glucano Endo-1,3-beta-D-Glucosidasa/metabolismo , Glicosilación , Factores de Intercambio de Guanina Nucleótido , Higromicina B/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Manosiltransferasas/genética , Manosiltransferasas/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Fenotipo , Proteínas Serina-Treonina Quinasas , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Compuestos de Piridinio/metabolismo , Compuestos de Amonio Cuaternario/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Vacuolas/metabolismo , Vacuolas/ultraestructura , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
18.
Cell Cycle ; 4(7): 961-71, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15917648

RESUMEN

The mitotic exit network (MEN) controls the exit from mitosis in budding yeast. The proline-directed phosphatase, Cdc14p, is a key component of MEN and promotes mitotic exit by activating the degradation of Clb2p and by reversing Cdk-mediated mitotic phosphorylation. Cdc14p is sequestered in the nucleolus during much of the cell cycle and is released in anaphase from the nucleolus to the nucleoplasm and cytoplasm to perform its functions. Release of Cdc14p from the nucleolus during anaphase is well understood. In contrast, less is known about the mechanism by which Cdc14p is released from the nucleus to the cytoplasm. Here we show that Cdc14p contains a leucine-rich nuclear export signal (NES) that interacts with Crm1p physically. Mutations in the NES of Cdc14p allow Clb2p degradation and mitotic exit, but cause abnormal morphology and cytokinesis defects at non-permissive temperatures. Cdc14p localizes to the bud neck, among other cytoplasmic structures, following its release from the nucleolus in late anaphase. This bud neck localization of Cdc14p is disrupted by mutations in its NES and by the leptomycin B-mediated inhibition of Crm1p. Our results suggest a requirement for Crm1p-dependent nuclear export of Cdc14p in coordinating mitotic exit and cytokinesis in budding yeast.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Carioferinas/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomycetales/citología , Saccharomycetales/metabolismo , Transporte Activo de Núcleo Celular , Secuencia de Aminoácidos , Animales , Proteínas de Ciclo Celular/química , Células Cultivadas , Ciclina B/metabolismo , Citocinesis , Fosfatasas de Especificidad Dual , Ácidos Grasos Insaturados/farmacología , Humanos , Ratones , Datos de Secuencia Molecular , Mutación/genética , Señales de Exportación Nuclear , Fenotipo , Monoéster Fosfórico Hidrolasas/química , Monoéster Fosfórico Hidrolasas/metabolismo , Transporte de Proteínas , Proteínas Tirosina Fosfatasas/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomycetales/efectos de los fármacos , Alineación de Secuencia , Proteína Exportina 1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA