Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Sensors (Basel) ; 20(12)2020 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-32630376

RESUMEN

In recent years there has been an increasing need for miniature, low-cost, commercially accessible, and user-friendly sensor solutions for wireless body area networks (WBAN), which has led to the adoption of new physical communication interfaces providing distinctive advantages over traditional wireless technologies. Ultra-wideband (UWB) and intrabody communication (IBC) have been the subject of intensive research in recent years due to their promising characteristics as means for short-range, low-power, and low-data-rate wireless interfaces for interconnection of various sensors and devices placed on, inside, or in the close vicinity of the human body. The need for safe and standardized solutions has resulted in the development of two relevant standards, IEEE 802.15.4 (for UWB) and IEEE 802.15.6 (for UWB and IBC), respectively. This paper presents an in-depth overview of recent studies and advances in the field of application of UWB and IBC technologies for wireless body sensor communication systems.


Asunto(s)
Redes de Comunicación de Computadores , Tecnología de la Información , Tecnología Inalámbrica , Comunicación , Humanos
2.
Biomed Eng Online ; 17(1): 71, 2018 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-29866126

RESUMEN

BACKGROUND: Intra-body communication (IBC) is one of the highlights in studies of body area networks. The existing IBC studies mainly focus on human channel characteristics of the physical layer, transceiver design for the application, and the protocol design for the networks. However, there are few safety analysis studies of the IBC electrical signals, especially for the galvanic-coupled type. Besides, the human channel model used in most of the studies is just a multi-layer homocentric cylinder model, which cannot accurately approximate the real human tissue layer. METHODS: In this paper, the empirical arm models were established based on the geometrical information of six subjects. The thickness of each tissue layer and the anisotropy of muscle were also taken into account. Considering the International Commission on Non-Ionizing Radiation Protection (ICNIRP) guidelines, the restrictions taken as the evaluation criteria were the electric field intensity lower than 1.35 × 104 f V/m and the specific absorption rate (SAR) lower than 4 W/kg. The physiological electrode LT-1 was adopted in experiments whose size was 4 × 4 cm and the distance between each center of adjoining electrodes was 6 cm. The electric field intensity and localized SAR were all computed by the finite element method (FEM). The electric field intensity was set as average value of all tissues, while SAR was averaged over 10 g contiguous tissue. The computed data were compared with the 2010 ICNIRP guidelines restrictions in order to address the exposure restrictions of galvanic-coupled IBC electrical signals injected into the body with different amplitudes and frequencies. RESULTS: The input alternating signal was 1 mA current or 1 V voltage with the frequency range from 10 kHz to 1 MHz. When the subject was stimulated by a 1 mA alternating current, the average electric field intensity of all subjects exceeded restrictions when the frequency was lower than 20 kHz. The maximum difference among six subjects was 1.06 V/m at 10 kHz, and the minimum difference was 0.025 V/m at 400 kHz. While the excitation signal was a 1 V alternating voltage, the electric field intensity fell within the exposure restrictions gradually as the frequency increased beyond 50 kHz. The maximum difference among the six subjects was 2.55 V/m at 20 kHz, and the minimum difference was 0.54 V/m at 1 MHz. In addition, differences between the maximum and the minimum values at each frequency also decreased gradually with the frequency increased in both situations of alternating current and voltage. When SAR was introduced as the criteria, none of the subjects exceeded the restrictions with current injected. However, subjects 2, 4, and 6 did not satisfy the restrictions with voltage applied when the signal amplitude was ≥ 3, 6, and 10 V, respectively. The SAR differences for subjects with different frequencies were 0.062-1.3 W/kg of current input, and 0.648-6.096 W/kg of voltage input. CONCLUSION: Based on the empirical arm models established in this paper, we came to conclusion that the frequency of 100-300 kHz which belong to LF (30-300 kHz) according to the ICNIRP guidelines can be considered as the frequency restrictions of the galvanic-coupled IBC signal. This provided more choices for both intensities of current and voltage signals as well. On the other hand, it also makes great convenience for the design of transceiver hardware and artificial intelligence application. With the frequency restrictions settled, the intensity restrictions that the current signal of 1-10 mA and the voltage signal of 1-2 V were accessible. Particularly, in practical application we recommended the use of the current signals for its broad application and lower impact on the human tissue. In addition, it is noteworthy that the coupling structure design of the electrode interface should attract attention.


Asunto(s)
Electricidad , Análisis de Elementos Finitos
3.
Eur J Pharmacol ; 962: 176242, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38048980

RESUMEN

Overt muscle activity and impaired spinal locomotor control hampering coordinated movement is a hallmark of spasticity and movement disorders like dystonia. While botulinum toxin A (BoNT-A) standard therapy alleviates mentioned symptoms presumably due to its peripheral neuromuscular actions alone, the aim of present study was to examine for the first time the toxin's trans-synaptic activity within central circuits that govern the skilled movement. The rat hindlimb motor pools were targeted by BoNT-A intrasciatic bilateral injection (2 U per nerve), while its trans-synaptic action on premotor inputs was blocked by intrathecal BoNT-A-neutralising antitoxin (5 i.u.). Effects of BoNT-A on coordinated and high intensity motor tasks (rotarod, beamwalk swimming), and localised muscle weakness (digit abduction, gait ability) were followed until their substantial recovery by day 56 post BoNT-A. Later, (day 62-77) the BoNT-A effects were examined in unilateral calf muscle spasm evoked by tetanus toxin (TeNT, 1.5 ng). In comparison to peripheral effect alone, combined peripheral and central trans-synaptic BoNT-A action induced a more prominent and longer impairment of different motor tasks, as well as the localised muscle weakness. After near-complete recovery of motor functions, the BoNT-A maintained the ability to reduce the experimental calf spasm evoked by tetanus toxin (TeNT 1.5 ng, day 62) without altering the monosynaptic reflex excitability. These results indicate that, in addition to muscle terminals, BoNT-A-mediated control of hyperactive muscle activity in movement disorders and spasticity may involve the spinal premotor inputs and central circuits participating in the skilled locomotor performance.


Asunto(s)
Toxinas Botulínicas Tipo A , Trastornos del Movimiento , Fármacos Neuromusculares , Ratas , Animales , Toxinas Botulínicas Tipo A/farmacología , Toxina Tetánica , Movimiento , Debilidad Muscular , Fármacos Neuromusculares/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA