Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Struct Biol ; 216(3): 108105, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38852682

RESUMEN

Human serum albumin (HSA) is the most prevalent plasma protein in the human body, accounting for 60 % of the total plasma protein. HSA plays a major pharmacokinetic function, serving as a facilitator in the distribution of endobiotics and xenobiotics within the organism. In this paper we report the cryoEM structures of HSA in the apo form and in complex with two ligands (salicylic acid and teniposide) at a resolution of 3.5, 3.7 and 3.4 Å, respectively. We expand upon previously published work and further demonstrate that sub-4 Å maps of ∼60 kDa proteins can be routinely obtained using a 200 kV microscope, employing standard workflows. Most importantly, these maps allowed for the identification of small molecule ligands, emphasizing the practical applicability of this methodology and providing a starting point for subsequent computational modeling and in silico optimization.

2.
Int J Mol Sci ; 25(8)2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38674110

RESUMEN

Membrane proteins constitute about 20% of the human proteome and play crucial roles in cellular functions. However, a complete understanding of their structure and function is limited by their hydrophobic nature, which poses significant challenges in purification and stabilization. Detergents, essential in the isolation process, risk destabilizing or altering the proteins' native conformations, thus affecting stability and functionality. This study leverages single-particle cryo-electron microscopy to elucidate the structural nuances of membrane proteins, focusing on the SLAC1 bacterial homolog from Haemophilus influenzae (HiTehA) purified with diverse detergents, including n-dodecyl ß-D-maltopyranoside (DDM), glycodiosgenin (GDN), ß-D-octyl-glucoside (OG), and lauryl maltose neopentyl glycol (LMNG). This research not only contributes to the understanding of membrane protein structures but also addresses detergent effects on protein purification. By showcasing that the overall structural integrity of the channel is preserved, our study underscores the intricate interplay between proteins and detergents, offering insightful implications for drug design and membrane biology.


Asunto(s)
Proteínas Bacterianas , Microscopía por Crioelectrón , Detergentes , Haemophilus influenzae , Microscopía por Crioelectrón/métodos , Haemophilus influenzae/ultraestructura , Haemophilus influenzae/química , Proteínas Bacterianas/química , Proteínas Bacterianas/ultraestructura , Detergentes/química , Microscopía Electrónica de Transmisión/métodos , Proteínas de la Membrana/química , Proteínas de la Membrana/ultraestructura , Proteínas de la Membrana/metabolismo
3.
Biol Sex Differ ; 12(1): 51, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34526108

RESUMEN

BACKGROUND: Incentives to promote drinking ("happy hour") can encourage faster rates of alcohol consumption, especially in women. Sex differences in drinking dynamics may underlie differential health vulnerabilities relating to alcohol in women versus men. Herein, we used operant procedures to model the happy hour effect and gain insight into the alcohol drinking dynamics of male and female rats. METHODS: Adult male and female Wistar rats underwent operant training to promote voluntary drinking of 10% (w/v) alcohol (8 rats/sex). We tested how drinking patterns changed after manipulating the effort required for alcohol (fixed ratio, FR), as well as the length of time in which rats had access to alcohol (self-administration session length). Rats were tested twice within the 12 h of the dark cycle, first at 2 h (early phase of the dark cycle, "early sessions") and then again at 10 h into the dark cycle (late phase of the dark cycle, "late sessions") with an 8-h break between the two sessions in the home cage. RESULTS: Adult females consumed significantly more alcohol (g/kg) than males in the 30-min sessions with the FR1 schedule of reinforcement when tested late in the dark cycle. Front-loading of alcohol was the primary factor driving higher consumption in females. Changing the schedule of reinforcement from FR1 to FR3 reduced total consumption. Notably, this manipulation had minimal effect on front-loading behavior in females, whereas front-loading behavior was significantly reduced in males when more effort was required to access alcohol. Compressing drinking access to 15 min to model a happy hour drove up front-loading behavior, generating alcohol drinking patterns in males that were similar to patterns in females (faster drinking and higher intake). CONCLUSIONS: This strategy could be useful for exploring sex differences in the neural mechanisms underlying alcohol drinking and related health vulnerabilities. Our findings also highlight the importance of the time of testing for detecting sex differences in drinking behavior.


Asunto(s)
Consumo de Bebidas Alcohólicas , Etanol , Animales , Femenino , Masculino , Ratas , Ratas Wistar , Autoadministración , Caracteres Sexuales
4.
Front Mol Biosci ; 8: 648603, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34327213

RESUMEN

The emerging field of microcrystal electron diffraction (MicroED) is of great interest to industrial researchers working in the drug discovery and drug development space. The promise of being able to routinely solve high-resolution crystal structures without the need to grow large crystals is very appealing. Despite MicroED's exciting potential, adoption across the pharmaceutical industry has been slow, primarily owing to a lack of access to specialized equipment and expertise. Here we present our experience building a small molecule MicroED service pipeline for members of the pharmaceutical industry. In the past year, we have examined more than fifty small molecule samples submitted by our clients, the majority of which have yielded data suitable for structure solution. We also detail our experience determining small molecule MicroED structures of pharmaceutical interest and offer some insights into the typical experimental outcomes. This experience has led us to conclude that small molecule MicroED adoption will continue to grow within the pharmaceutical industry where it is able to rapidly provide structures inaccessible by other methods.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA