Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Pediatr Blood Cancer ; 69(8): e29663, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35373890

RESUMEN

High-dose chemotherapy with autologous stem cell transplant (ASCT) has been a mainstay of high-risk neuroblastoma treatment for several decades, demonstrating improvements in event-free survival but with risks of serious or even life-threatening acute toxicities, severe long-term adverse health effects for survivors, and ongoing contention regarding overall survival benefit. The merits of ASCT in the modern era of immunotherapy are a source of debate among parents, advocates, and some physicians. Here we examine evidence for and against ASCT, explore parent attitudes and their turmoil over decision-making, and strongly encourage international research consortia to develop a coordinated strategy to accelerate progress toward a future that avoids the routine use of ASCT in high-risk neuroblastoma.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Neuroblastoma , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Supervivencia sin Enfermedad , Humanos , Inmunoterapia , Defensa del Paciente , Trasplante Autólogo
2.
Pediatr Blood Cancer ; 69(9): e29854, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35713116

RESUMEN

Nonprofit organizations (NPOs) play critical roles as funding sources, research partners, and disseminators of drug developments in pediatric cancer. Yet the literature provides limited guidance about ethical best practices when NPOs make trial funding decisions in this space. We conducted a systematic review of the literature indexed in PubMed and Web of Science to identify the ethical, legal, and social responsibilities of NPOs to four key stakeholder groups in funding pediatric cancer trials: (i) patients/families, (ii) researchers, (iii) industry sponsors, and (iv) donors. We applied the lifecycle framework for patient engagement in drug research and development proposed by Geissler and colleagues to analyze themes related to NPOs' responsibilities across 54 articles that met our inclusion criteria. Emergent themes included transparency surrounding conflicts of interest, the rigor of scientific review, and communication with patients/communities about trial progress. Our research identified critical gaps in best practices for negotiating research partnerships, managing competing research priorities, and pursuing alternative financing models including venture philanthropy. Results from our review informed a set of best practices to guide NPOs in making trial funding decisions that align with stakeholder values and interests.


Asunto(s)
Neoplasias , Organizaciones sin Fines de Lucro , Niño , Humanos , Neoplasias/terapia , Responsabilidad Social
3.
Pediatr Blood Cancer ; 67(9): e28435, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32558190

RESUMEN

A diverse panel of pediatric cancer advocates and experts, whose collective experience spans the continuum of international academic medicine, industry, government research, and cancer advocacy, recently discussed challenges for pediatric cancer research in the context of coronavirus disease 2019 (COVID-19). Specifically, this special report addresses the following focus areas: (a) the critical role that translational research has played in transforming pediatric cancer outcomes; (b) the current and potential future impact of COVID-19 on pediatric cancer research; (c) target areas of COVID-19 research that may have application in immunity, oncogenesis, and therapeutic discovery; and (d) future considerations and directions in maintaining pediatric cancer research during and after COVID-19.


Asunto(s)
Betacoronavirus/metabolismo , Infecciones por Coronavirus , Neoplasias , Pandemias , Neumonía Viral , Investigación Biomédica Traslacional , Adolescente , COVID-19 , Niño , Preescolar , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/metabolismo , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/terapia , Femenino , Humanos , Lactante , Masculino , Neoplasias/epidemiología , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/terapia , Neumonía Viral/epidemiología , Neumonía Viral/metabolismo , Neumonía Viral/patología , Neumonía Viral/terapia , SARS-CoV-2
4.
Eur J Cancer ; 207: 114145, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38936103

RESUMEN

Phosphatidylinositol 3-kinase (PI3-K) signalling pathway is a crucial path in cancer for cell survival and thus represents an intriguing target for new paediatric anti-cancer drugs. However, the unique clinical toxicities of targeting this pathway (resulting in hyperglycaemia) difficulties combining with chemotherapy, rarity of mutations in childhood tumours and concomitant mutations have resulted in major barriers to clinical translation of these inhibitors in treating both adults and children. Mutations in PIK3CA predict response to PI3-K inhibitors in adult cancers. The same mutations occur in children as in adults, but they are significantly less frequent in paediatrics. In children, high-grade gliomas, especially diffuse midline gliomas (DMG), have the highest incidence of PIK3CA mutations. New mutation-specific PI3-K inhibitors reduce toxicity from on-target PI3-Kα wild-type activity. The mTOR inhibitor everolimus is approved for subependymal giant cell astrocytomas. In paediatric cancers, mTOR inhibitors have been predominantly evaluated by academia, without an overall strategy, in empiric, mutation-agnostic clinical trials with very low response rates to monotherapy. Therefore, future trials of single agent or combination strategies of mTOR inhibitors in childhood cancer should be supported by very strong biological rationale and preclinical data. Further preclinical evaluation of glycogen synthase kinase-3 beta inhibitors is required. Similarly, even where there is an AKT mutation (∼0.1 %), the role of AKT inhibitors in paediatric cancers remains unclear. Patient advocates strongly urged analysing and conserving data from every child participating in a clinical trial. A priority is to evaluate mutation-specific, central nervous system-penetrant PI3-K inhibitors in children with DMG in a rational biological combination. The choice of combination, should be based on the genomic landscape e.g. PTEN loss and resistance mechanisms supported by preclinical data. However, in view of the very rare populations involved, innovative regulatory approaches are needed to generate data for an indication.

5.
Eur J Cancer ; 190: 112950, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37441939

RESUMEN

DNA damage response inhibitors have a potentially important therapeutic role in paediatric cancers; however, their optimal use, including patient selection and combination strategy, remains unknown. Moreover, there is an imbalance between the number of drugs with diverse mechanisms of action and the limited number of paediatric patients available to be enrolled in early-phase trials, so prioritisation and a strategy are essential. While PARP inhibitors targeting homologous recombination-deficient tumours have been used primarily in the treatment of adult cancers with BRCA1/2 mutations, BRCA1/2 mutations occur infrequently in childhood tumours, and therefore, a specific response hypothesis is required. Combinations with targeted radiotherapy, ATR inhibitors, or antibody drug conjugates with DNA topoisomerase I inhibitor-related warheads warrant evaluation. Additional monotherapy trials of PARP inhibitors with the same mechanism of action are not recommended. PARP1-specific inhibitors and PARP inhibitors with very good central nervous system penetration also deserve evaluation. ATR, ATM, DNA-PK, CHK1, WEE1, DNA polymerase theta and PKMYT1 inhibitors are early in paediatric development. There should be an overall coordinated strategy for their development. Therefore, an academia/industry consensus of the relevant biomarkers will be established and a focused meeting on ATR inhibitors (as proof of principle) held. CHK1 inhibitors have demonstrated activity in desmoplastic small round cell tumours and have a potential role in the treatment of other paediatric malignancies, such as neuroblastoma and Ewing sarcoma. Access to CHK1 inhibitors for paediatric clinical trials is a high priority. The three key elements in evaluating these inhibitors in children are (1) innovative trial design (design driven by a clear hypothesis with the intent to further investigate responders and non-responders with detailed retrospective molecular analyses to generate a revised or new hypothesis); (2) biomarker selection and (3) rational combination therapy, which is limited by overlapping toxicity. To maximally benefit children with cancer, investigators should work collaboratively to learn the lessons from the past and apply them to future studies. Plans should be based on the relevant biology, with a focus on simultaneous and parallel research in preclinical and clinical settings, and an overall integrated and collaborative strategy.


Asunto(s)
Antineoplásicos , Neuroblastoma , Estados Unidos , Adulto , Humanos , Niño , Adolescente , Antineoplásicos/uso terapéutico , Proteína BRCA1 , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , United States Food and Drug Administration , Estudios Retrospectivos , Proteína BRCA2 , Neuroblastoma/tratamiento farmacológico , Biomarcadores , Daño del ADN , Proteínas de la Membrana , Proteínas Tirosina Quinasas , Proteínas Serina-Treonina Quinasas
6.
J Clin Oncol ; 40(29): 3456, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-35947814

RESUMEN

PURPOSE: For decades, academic clinical trials consortia have collaborated to optimize outcomes for childhood cancers through evaluating incremental improvements in conventional mutimodality treatment regimes. There are now increasing opportunities to partner with industry to test new medicines in academic-sponsored trials, but these collaborative studies rarely contribute to marketing authorizations. We addressed why this is the case and sought solutions to enable academic-sponsored trials to directly contribute to the licensing of new medicines. METHODS: Under the auspices of the multistakeholder platform ACCELERATE, we convened a working group of representatives from clinical academia, pharmaceutical industry, European Medicines Agency, US Food and Drug Administration, and patient advocacy to define the challenges and propose recommendations to facilitate academic-sponsored trial design and conduct to be aligned to both the needs of the pharmaceutical company who own the asset and the expectations of the regulatory (licensing) authorities. RESULTS: We identified that although academic consortia have long-standing expertise to conduct robust clinical trials, there were critical gaps in knowledge, standard procedures, and resources that hindered the trial data directly contributing to marketing authorization applications. We propose a suite of recommendations focused on (1) essential documents, (2) essential data, (3) data management, and (4) trial resources, specifically aimed at enabling academic-industry partnerships to deliver an academic-sponsored trial that meets the requirements for a marketing authorization submission. These recommendations pivot around transparency in academic-industry partnerships and early engagement with regulators. CONCLUSION: Academic sponsors and industry partners need to prospectively recognize when the planned collaborative trial could contribute to an application to marketing authorization and plan accordingly. Transparent collaboration and knowledge sharing between the partners opens an important pathway for accelerating new treatments into clinical practice for children with cancer.


Asunto(s)
Aprobación de Drogas , Neoplasias , Niño , Industria Farmacéutica , Humanos , Neoplasias/tratamiento farmacológico , Preparaciones Farmacéuticas , Estados Unidos , United States Food and Drug Administration
7.
Eur J Cancer ; 173: 71-90, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35863108

RESUMEN

The eighth Paediatric Strategy Forum focused on multi-targeted kinase inhibitors (mTKIs) in osteosarcoma and Ewing sarcoma. The development of curative, innovative products in these tumours is a high priority and addresses unmet needs in children, adolescents and adults. Despite clinical and investigational use of mTKIs, efficacy in patients with bone tumours has not been definitively demonstrated. Randomised studies, currently being planned or in progress, in front-line and relapse settings will inform the further development of this class of product. It is crucial that these are rapidly initiated to generate robust data to support international collaborative efforts. The experience to date has generally indicated that the safety profile of mTKIs as monotherapy, and in combination with chemotherapy or other targeted therapy, is consistent with that of adults and that toxicity is manageable. Increasing understanding of relevant predictive biomarkers and tumour biology is absolutely critical to further develop this class of products. Biospecimen samples for correlative studies and biomarker development should be shared, and a joint academic-industry consortium created. This would result in an integrated collection of serial tumour tissues and a systematic retrospective and prospective analyses of these samples to ensure robust assessment of biologic effect of mTKIs. To support access for children to benefit from these novel therapies, clinical trials should be designed with sufficient scientific rationale to support regulatory and payer requirements. To achieve this, early dialogue between academia, industry, regulators, and patient advocates is essential. Evaluating feasibility of combination strategies and then undertaking a randomised trial in the same protocol accelerates drug development. Where possible, clinical trials and development should include children, adolescents, and adults less than 40 years. To respond to emerging science, in approximately 12 months, a multi-stakeholder group will meet and review available data to determine future directions and priorities.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Adolescente , Adulto , Neoplasias Óseas/tratamiento farmacológico , Niño , Humanos , Recurrencia Local de Neoplasia , Osteosarcoma/tratamiento farmacológico , Estudios Prospectivos , Estudios Retrospectivos , Estados Unidos , United States Food and Drug Administration
8.
Eur J Cancer ; 160: 112-133, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34840026

RESUMEN

The seventh multi-stakeholder Paediatric Strategy Forum focused on chimeric antigen receptor (CAR) T-cells for children and adolescents with cancer. The development of CAR T-cells for patients with haematological malignancies, especially B-cell precursor acute lymphoblastic leukaemia (BCP-ALL), has been spectacular. However, currently, there are scientific, clinical and logistical challenges for use of CAR T-cells in BCP-ALL and other paediatric malignancies, particularly in acute myeloid leukaemia (AML), lymphomas and solid tumours. The aims of the Forum were to summarise the current landscape of CAR T-cell therapy development in paediatrics, too identify current challenges and future directions, with consideration of other immune effector modalities and ascertain the best strategies to accelerate their development and availability to children. Although the effect is of limited duration in about half of the patients, anti-CD19 CAR T-cells produce high response rates in relapsed/refractory BCP-ALL and this has highlighted previously unknown mechanisms of relapse. CAR T-cell treatment as first- or second-line therapy could also potentially benefit patients whose disease has high-risk features associated with relapse and failure of conventional therapies. Identifying patients with very early and early relapse in whom CAR T-cell therapy may replace haematopoietic stem cell transplantation and be definitive therapy versus those in whom it provides a more effective bridge to haematopoietic stem cell transplantation is a very high priority. Development of approaches to improve persistence, either by improving T cell fitness or using more humanised/fully humanised products and co-targeting of multiple antigens to prevent antigen escape, could potentially further optimise therapy. Many differences exist between paediatric B-cell non-Hodgkin lymphomas (B-NHL) and BCP-ALL. In view of the very small patient numbers with relapsed lymphoma, careful prioritisation is needed to evaluate CAR T-cells in children with Burkitt lymphoma, primary mediastinal B cell lymphoma and other NHL subtypes. Combination trials of alternative targets to CD19 (CD20 or CD22) should also be explored as a priority to improve efficacy in this population. Development of CD30 CAR T-cell immunotherapy strategies in patients with relapsed/refractory Hodgkin lymphoma will likely be most efficiently accomplished by joint paediatric and adult trials. CAR T-cell approaches are early in development for AML and T-ALL, given the unique challenges of successful immunotherapy actualisation in these diseases. At this time, CD33 and CD123 appear to be the most universal targets in AML and CD7 in T-ALL. The results of ongoing or planned first-in-human studies are required to facilitate further understanding. There are promising early results in solid tumours, particularly with GD2 targeting cell therapies in neuroblastoma and central nervous system gliomas that represent significant unmet clinical needs. Further understanding of biology is critical to success. The comparative benefits of autologous versus allogeneic CAR T-cells, T-cells engineered with T cell receptors T-cells engineered with T cell receptor fusion constructs, CAR Natural Killer (NK)-cell products, bispecific T-cell engager antibodies and antibody-drug conjugates require evaluation in paediatric malignancies. Early and proactive academia and multi-company engagement are mandatory to advance cellular immunotherapies in paediatric oncology. Regulatory advice should be sought very early in the design and preparation of clinical trials of innovative medicines, for which regulatory approval may ultimately be sought. Aligning strategic, scientific, regulatory, health technology and funding requirements from the inception of a clinical trial is especially important as these are very expensive therapies. The model for drug development for cell therapy in paediatric oncology could also involve a 'later stage handoff' to industry after early development in academic hands. Finally, and very importantly, strategies must evolve to ensure appropriate ease of access for children who need and could potentially benefit from these therapies.


Asunto(s)
Desarrollo de Medicamentos/organización & administración , Oncología Médica/organización & administración , Receptores de Antígenos de Linfocitos T/genética , Receptores Quiméricos de Antígenos/genética , Adolescente , Niño , Europa (Continente) , Humanos , Pediatría , Estados Unidos , United States Food and Drug Administration
9.
Eur J Cancer ; 146: 115-124, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33601323

RESUMEN

Based on biology and pre-clinical data, bromodomain and extra-terminal (BET) inhibitors have at least three potential roles in paediatric malignancies: NUT (nuclear protein in testis) carcinomas, MYC/MYCN-driven cancers and fusion-driven malignancies. However, there are now at least 10 BET inhibitors in development, with a limited relevant paediatric population in which to evaluate these medicinal products. Therefore, a meeting was convened with the specific aim to develop a consensus among relevant biopharmaceutical companies, academic researchers, as well as patient and family advocates, about the development of BET inhibitors, including prioritisation and their specific roles in children. Although BET inhibitors have been in clinical trials in adults since 2012, the first-in-child study (BMS-986158) only opened in 2019. In the future, when there is strong mechanistic rationale or pre-clinical activity of a class of medicinal product in paediatrics, early clinical evaluation with embedded correlative studies of a member of the class should be prioritised and rapidly executed in paediatric populations. There is a strong mechanistic and biological rationale to evaluate BET inhibitors in paediatrics, underpinned by substantial, but not universal, pre-clinical data. However, most pan-BET inhibitors have been challenging to administer in adults, since monotherapy results in only modest anti-tumour activity and provides a narrow therapeutic index due to thrombocytopenia. It was concluded that it is neither scientifically justified nor feasible to undertake simultaneously early clinical trials in paediatrics of all pan-BET inhibitors. However, there is a clinical need for global access to BET inhibitors for patients with NUT carcinoma, a very rare malignancy driven by bromodomain fusions, with proof of concept of clinical benefit in a subset of patients treated with BET inhibitors. Development and regulatory pathway in this indication should include children and adolescents as well as adults. Beyond NUT carcinoma, it was proposed that further clinical development of other pan-BET inhibitors in children should await the results of the first paediatric clinical trial of BMS-986158, unless there is compelling rationale based on the specific agent of interest. BDII-selective inhibitors, central nervous system-penetrant BET inhibitors (e.g. CC-90010), and those dual-targeting BET/p300 bromodomain are of particular interest and warrant further pre-clinical investigation. This meeting emphasised the value of a coordinated and integrated strategy to drug development in paediatric oncology. A multi-stakeholder approach with multiple companies developing a consensus with academic investigators early in the development of a class of compounds, and then engaging regulatory agencies would improve efficiency, productivity, conserve resources and maximise potential benefit for children with cancer.


Asunto(s)
Antineoplásicos/uso terapéutico , Desarrollo de Medicamentos/métodos , Epigénesis Genética , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Proteínas/antagonistas & inhibidores , Niño , Consenso , Humanos , Neoplasias/metabolismo , Neoplasias/patología
10.
Eur J Cancer ; 139: 135-148, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32992153

RESUMEN

The fifth multistakeholder Paediatric Strategy Forum focussed on epigenetic modifier therapies for children and adolescents with cancer. As most mutations in paediatric malignancies influence chromatin-associated proteins or transcription and paediatric cancers are driven by developmental gene expression programs, targeting epigenetic mechanisms is predicted to be a very important therapeutic approach in paediatric cancer. The Research to Accelerate Cures and Equity (RACE) for Children Act FDARA amendments to section 505B of the FD&C Act was implemented in August 2020, and as there are many epigenetic targets on the FDA Paediatric Molecular Targets List, clinical evaluation of epigenetic modifiers in paediatric cancers should be considered early in drug development. Companies are also required to submit to the EMA paediatric investigation plans aiming to ensure that the necessary data to support the authorisation of a medicine for children in EU are of high quality and ethically researched. The specific aims of the forum were i) to identify epigenetic targets or mechanisms of action associated with epigenetic modification relevant to paediatric cancers and ii) to define the landscape for paediatric drug development of epigenetic modifier therapies. DNA methyltransferase inhibitors/hypomethylating agents and histone deacetylase inhibitors were largely excluded from discussion as the aim was to discuss those targets for which therapeutic agents are currently in early paediatric and adult development. Epigenetics is an evolving field and could be highly relevant to many paediatric cancers; the biology is multifaceted and new targets are frequently emerging. Targeting epigenetic mechanisms in paediatric malignancy has in most circumstances yet to reach or extend beyond clinical proof of concept, as many targets do not yet have available investigational drugs developed. Eight classes of medicinal products were discussed and prioritised based on the existing level of science to support early evaluation in children: inhibitors of menin, DOT1L, EZH2, EED, BET, PRMT5 and LSD1 and a retinoic acid receptor alpha agonist. Menin inhibitors should be moved rapidly into paediatric development, in view of their biological rationale, strong preclinical activity and ability to fulfil an unmet clinical need. A combination approach is critical for successful utilisation of any epigenetic modifiers (e.g. EZH2 and EED) and exploration of the optimum combination(s) should be supported by preclinical research and, where possible, molecular biomarker validation in advance of clinical translation. A follow-up multistakeholder meeting focussing on BET inhibitors will be held to define how to prioritise the multiple compounds in clinical development that could be evaluated in children with cancer. As epigenetic modifiers are relatively early in development in paediatrics, there is a clear opportunity to shape the landscape of therapies targeting the epigenome in order that efficient and optimum plans for their evaluation in children and adolescents are developed in a timely manner.


Asunto(s)
Antineoplásicos/uso terapéutico , Epigénesis Genética/efectos de los fármacos , Neoplasias/tratamiento farmacológico , Animales , Niño , Desarrollo de Medicamentos , Epigenómica/métodos , Europa (Continente) , Humanos , Oncología Médica/métodos , Estados Unidos , United States Food and Drug Administration
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA