Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Am Chem Soc ; 141(44): 17558-17570, 2019 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-31604015

RESUMEN

Singlet fission in organic semiconductors causes a singlet exciton to decay into a pair of triplet excitons and holds potential for increasing the efficiency of photovoltaic devices. In this combined experimental and theoretical study, we reveal that a covalent dimer of the organic semiconductor tetracene undergoes activated singlet fission by qualitatively different mechanisms depending on the solvent environment. We show that intramolecular vibrations are an integral part of this mechanism, giving rise to mixing between charge transfer and triplet pair excitations. Either coherent or incoherent singlet fission can occur, depending on the transient solvent-induced energetic proximity between the states, giving rise to complex variation of the singlet fission mechanism and time scale in the different environments. Our results suggest a more general principle for controlling the efficiency of photochemical reactions by utilizing transient interactions to tune the energetics of reactant and product states and switch between incoherent and coherent dynamics.

2.
Nat Mater ; 22(4): 405, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36522417
3.
J Am Chem Soc ; 139(50): 18376-18385, 2017 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-29164879

RESUMEN

Singlet fission offers the potential to overcome thermodynamic limits in solar cells by converting the energy of a single absorbed photon into two distinct triplet excitons. However, progress is limited by the small family of suitable materials, and new chromophore design principles are needed. Here, we experimentally vindicate the design concept of diradical stabilization in a tunable family of functionalized zethrenes. All molecules in the series exhibit rapid formation of a bound, spin-entangled triplet-pair state TT. It can be dissociated by thermally activated triplet hopping and exhibits surprisingly strong emission for an optically "dark" state, further enhanced with increasing diradical character. We find that the TT excited-state absorption spectral shape correlates with the binding energy between constituent triplets, providing a new tool to understand this unusual state. Our results reveal a versatile new family of tunable materials with excellent optical and photochemical properties for exploitation in singlet fission devices.

4.
Nat Nanotechnol ; 15(8): 675-682, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32601449

RESUMEN

The development of infrared photodetectors is mainly limited by the choice of available materials and the intricate crystal growth process. Moreover, thermally activated carriers in traditional III-V and II-VI semiconductors enforce low operating temperatures in the infrared photodetectors. Here we demonstrate infrared photodetection enabled by interlayer excitons (ILEs) generated between tungsten and hafnium disulfide, WS2/HfS2. The photodetector operates at room temperature and shows an even higher performance at higher temperatures owing to the large exciton binding energy and phonon-assisted optical transition. The unique band alignment in the WS2/HfS2 heterostructure allows interlayer bandgap tuning from the mid- to long-wave infrared spectrum. We postulate that the sizeable charge delocalization and ILE accumulation at the interface result in a greatly enhanced oscillator strength of the ILEs and a high responsivity of the photodetector. The sensitivity of ILEs to the thickness of two-dimensional materials and the external field provides an excellent platform to realize robust tunable room temperature infrared photodetectors.

5.
Nat Commun ; 10(1): 4207, 2019 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-31527736

RESUMEN

The complex dynamics of ultrafast photoinduced reactions are governed by their evolution along vibronically coupled potential energy surfaces. It is now often possible to identify such processes, but a detailed depiction of the crucial nuclear degrees of freedom involved typically remains elusive. Here, combining excited-state time-domain Raman spectroscopy and tree-tensor network state simulations, we construct the full 108-atom molecular movie of ultrafast singlet fission in a pentacene dimer, explicitly treating 252 vibrational modes on 5 electronic states. We assign the tuning and coupling modes, quantifying their relative intensities and contributions, and demonstrate how these modes coherently synchronise to drive the reaction. Our combined experimental and theoretical approach reveals the atomic-scale singlet fission mechanism and can be generalized to other ultrafast photoinduced reactions in complex systems. This will enable mechanistic insight on a detailed structural level, with the ultimate aim to rationally design molecules to maximise the efficiency of photoinduced reactions.

7.
Nat Commun ; 8: 15953, 2017 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-28699637

RESUMEN

Entanglement of states is one of the most surprising and counter-intuitive consequences of quantum mechanics, with potent applications in cryptography and computing. In organic materials, one particularly significant manifestation is the spin-entangled triplet-pair state, which mediates the spin-conserving fission of one spin-0 singlet exciton into two spin-1 triplet excitons. Despite long theoretical and experimental exploration, the nature of the triplet-pair state and inter-triplet interactions have proved elusive. Here we use a range of organic semiconductors that undergo singlet exciton fission to reveal the photophysical properties of entangled triplet-pair states. We find that the triplet pair is bound with respect to free triplets with an energy that is largely material independent (∼30 meV). During its lifetime, the component triplets behave cooperatively as a singlet and emit light through a Herzberg-Teller-type mechanism, resulting in vibronically structured photoluminescence. In photovoltaic blends, charge transfer can occur from the bound triplet pairs with >100% photon-to-charge conversion efficiency.

8.
Methods Mol Biol ; 1366: 219-232, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26585138

RESUMEN

Estrogen receptors play critical roles in regulating genes responsible for development and maintenance of reproductive tissues and other physiological function. The interaction of ERs with DNA sequences, known as estrogen response elements (EREs) (a palindromic repeat separated by three-base spacer, 5'GGTCAnnnTGACC-3'), is required for estrogen regulation of target gene expression. Here, we describe a simple "mix-and-measure"-based method for detecting ER:ERE interactions using ERE-immobilized metal nanoparticles and water-soluble conjugated polyelectrolytes (CPEs) as cooperative sensing elements. This method can differentiate the distinct DNA-binding affinity between ERα and ERß, and determine ER:ERE-binding stoichiometry. This method can also accurately detect all 15 singly mutated EREs (i.e., three possible base substitutions at each of one to five positions from left to right of the 5' end half site, GGTCA) for their binding energy to ER. This method is compatible with 96-well plate format for high-throughput analysis.


Asunto(s)
Cloruros/química , ADN/metabolismo , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Compuestos de Oro/química , Nanopartículas del Metal , Nanotecnología/métodos , Elementos de Respuesta , Sitios de Unión , ADN/genética , Regulación de la Expresión Génica , Humanos , Mutación , Oxidación-Reducción , Unión Proteica , Flujo de Trabajo
9.
Nat Commun ; 7: 13622, 2016 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-27924819

RESUMEN

Understanding the mechanism of singlet exciton fission, in which a singlet exciton separates into a pair of triplet excitons, is crucial to the development of new chromophores for efficient fission-sensitized solar cells. The challenge of controlling molecular packing and energy levels in the solid state precludes clear determination of the singlet fission pathway. Here, we circumvent this difficulty by utilizing covalent dimers of pentacene with two types of side groups. We report rapid and efficient intramolecular singlet fission in both molecules, in one case via a virtual charge-transfer state and in the other via a distinct charge-transfer intermediate. The singlet fission pathway is governed by the energy gap between singlet and charge-transfer states, which change dynamically with molecular geometry but are primarily set by the side group. These results clearly establish the role of charge-transfer states in singlet fission and highlight the importance of solubilizing groups to optimize excited-state photophysics.

11.
ACS Appl Mater Interfaces ; 5(23): 12725-34, 2013 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-24221695

RESUMEN

Protein-DNA interactions play center roles in many biological processes. Studying sequence specific protein-DNA interactions and revealing sequence rules require sensitive and quantitative methodologies that are capable of capturing subtle affinity difference with high accuracy and in a high throughput manner. In this study, double stranded DNA-conjugated gold nanoparticles (dsDNA-AuNPs) and water-soluble conjugated polyelectrolytes (CPEs) are used as cooperative sensing elements to construct a suit of hybrid sensors for detecting protein-DNA interactions, exploiting the differential Förster resonance energy transfer (FRET) with and without protein binding. Through a proper selection of CPEs in terms of charge properties relative to the charge of dsDNA-AuNPs and emission wavelengths relative to the AuNP extinction peak, the hybrid sensors can be constructed into "light-on", "light-off", and "two-way" models. Protein binding can be detected by fluorescence recovery, fluorescence quenching, or both ways, respectively. The "two-way" sensor allows for detection of proteins of any charge properties or unknown charge properties. With estrogen receptor (ERα and ERß), their consensus DNA (5'-GGTCAnnnTGACC-5') element, and all 15 possible singly mutated elements (i.e., 3 possible base substitutions at each of 1 to 5 positions from left to right of the 5' end half site, GGTCA), we have demonstrated the accuracy of the hybrids sensors for determination of binding affinity constant, binding stoichiometry, and site- and nucleotide-specific binding energy matrix. The in vitro binding energy determined by the hybrid sensors correlates very well with the energy matrix computed from in vivo genome-wide ERα binding data using Thermodynamic Modeling of ChIP-Seq (rank correlation coefficient 0.98). The high degree of correlation of the in vitro energy matrix versus the in vivo matrix renders the new method a highly reliable alternative for understanding in vivo protein binding in the whole genome.


Asunto(s)
Técnicas Biosensibles , ADN/química , Electrólitos/química , Oro/química , Nanopartículas del Metal , Proteínas/química , Secuencia de Bases , Transferencia Resonante de Energía de Fluorescencia , Unión Proteica , Espectrometría de Fluorescencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA