Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Biochem J ; 480(22): 1791-1804, 2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-37975605

RESUMEN

Anthropogenic emissions have caused atmospheric carbon dioxide (CO2) concentrations to double since the industrial revolution. Although this could benefit plant growth from the 'CO2 fertilisation' effect, recent studies report conflicting impacts of elevated CO2 (eCO2) on plant-pathogen interactions. Fungal pathogens are the leading cause of plant disease. Since climate change has been shown to affect the distribution and virulence of these pathogens, it is important to understand how their plant hosts may also respond. This review assesses existing reports of positive, negative, and neutral effects of eCO2 on plant immune responses to fungal pathogen infection. The interaction between eCO2 and immunity appears specific to individual pathosystems, dependent on environmental context and driven by the interactions between plant defence mechanisms, suggesting no universal effect can be predicted for the future. This research is vital for assessing how plants may become more at risk under climate change and could help to guide biotechnological efforts to enhance resistance in vulnerable species. Despite the importance of understanding the effects of eCO2 on plant immunity for protecting global food security, biodiversity, and forests in a changing climate, many plant-pathogen interactions are yet to be investigated. In addition, further research into the effects of eCO2 in combination with other environmental factors associated with climate change is needed. In this review, we highlight the risks of eCO2 to plants and point to the research required to address current unknowns.


Asunto(s)
Dióxido de Carbono , Bosques , Dióxido de Carbono/farmacología , Plantas , Inmunidad de la Planta , Cambio Climático
2.
Biochem J ; 480(17): 1429-1443, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37497606

RESUMEN

Elevated CO2 (eCO2) is a determinant factor of climate change and is known to alter plant processes such as physiology, growth and resistance to pathogens. Quercus robur, a tree species integrated in most forest regeneration strategies, shows high vulnerability to powdery mildew (PM) disease at the seedling stage. PM is present in most oak forests and it is considered a bottleneck for oak woodland regeneration. Our study aims to decipher the effect of eCO2 on plant responses to PM. Oak seedlings were grown in controlled environment at ambient (aCO2, ∼400 ppm) and eCO2 (∼1000 ppm), and infected with Erysiphe alphitoides, the causal agent of oak PM. Plant growth, physiological parameters and disease progression were monitored. In addition, to evaluate the effect of eCO2 on induced resistance (IR), these parameters were assessed after treatments with IR elicitor ß-aminobutyric acid (BABA). Our results show that eCO2 increases photosynthetic rates and aerial growth but in contrast, reduces root length. Importantly, under eCO2 seedlings were more susceptible to PM. Treatments with BABA protected seedlings against PM and this protection was maintained under eCO2. Moreover, irrespectively of the concentration of CO2, BABA did not significantly change aerial growth but resulted in longer radicular systems, thus mitigating the effect of eCO2 in root shortening. Our results demonstrate the impact of eCO2 in plant physiology, growth and defence, and warrant further biomolecular studies to unravel the mechanisms by which eCO2 increases oak seedling susceptibility to PM.


Asunto(s)
Quercus , Plantones , Dióxido de Carbono/farmacología , Quercus/fisiología , Fotosíntesis
3.
Plant Cell Environ ; 44(1): 290-303, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33094513

RESUMEN

Current crop protection strategies against the fungal pathogen Botrytis cinerea rely on a combination of conventional fungicides and host genetic resistance. However, due to pathogen evolution and legislation in the use of fungicides, these strategies are not sufficient to protect plants against this pathogen. Defence elicitors can stimulate plant defence mechanisms through a phenomenon known as defence priming. Priming results in a faster and/or stronger expression of resistance upon pathogen recognition by the host. This work aims to study defence priming by a commercial formulation of the elicitor chitosan. Treatments with chitosan result in induced resistance (IR) in solanaceous and brassicaceous plants. In tomato plants, enhanced resistance has been linked with priming of callose deposition and accumulation of the plant hormone jasmonic acid (JA). Large-scale transcriptomic analysis revealed that chitosan primes gene expression at early time-points after infection. In addition, two novel tomato genes with a characteristic priming profile were identified, Avr9/Cf-9 rapidly elicited protein 75 (ACRE75) and 180 (ACRE180). Transient and stable over-expression of ACRE75, ACRE180 and their Nicotiana benthamiana homologs, revealed that they are positive regulators of plant resistance against B. cinerea. This provides valuable information in the search for strategies to protect Solanaceae plants against B. cinerea.


Asunto(s)
Botrytis , Quitosano/metabolismo , Resistencia a la Enfermedad , Enfermedades de las Plantas/inmunología , Solanum lycopersicum/microbiología , Arabidopsis , Western Blotting , Clonación Molecular , Perfilación de la Expresión Génica , Glucanos/metabolismo , Solanum lycopersicum/inmunología , Solanum lycopersicum/fisiología , Microscopía Confocal , Enfermedades de las Plantas/microbiología , Plantas Modificadas Genéticamente , Nicotiana/inmunología , Nicotiana/metabolismo , Nicotiana/microbiología
4.
New Phytol ; 218(3): 1205-1216, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29465773

RESUMEN

ß-Aminobutyric acid (BABA) induces broad-spectrum disease resistance, but also represses plant growth, which has limited its exploitation in crop protection. BABA perception relies on binding to the aspartyl-tRNA synthetase (AspRS) IBI1, which primes the enzyme for secondary defense activity. This study aimed to identify structural BABA analogues that induce resistance without stunting plant growth. Using site-directed mutagenesis, we demonstrate that the (l)-aspartic acid-binding domain of IBI1 is critical for BABA perception. Based on interaction models of this domain, we screened a small library of structural BABA analogues for growth repression and induced resistance against biotrophic Hyaloperonospora arabidopsidis (Hpa). A range of resistance-inducing compounds were identified, of which (R)-ß-homoserine (RBH) was the most effective. Surprisingly, RBH acted through different pathways than BABA. RBH-induced resistance (RBH-IR) against Hpa functioned independently of salicylic acid, partially relied on camalexin, and was associated with augmented cell wall defense. RBH-IR against necrotrophic Plectosphaerella cucumerina acted via priming of ethylene and jasmonic acid defenses. RBH-IR was also effective in tomato against Botrytis cinerea. Metabolic profiling revealed that RBH, unlike BABA, does not majorly affect plant metabolism. RBH primes distinct defense pathways against biotrophic and necrotrophic pathogens without stunting plant growth, signifying strong potential for exploitation in crop protection.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/inmunología , Desarrollo de la Planta , Inmunidad de la Planta , Aminobutiratos/farmacología , Arabidopsis/metabolismo , Arabidopsis/microbiología , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Simulación por Computador , Resistencia a la Enfermedad/efectos de los fármacos , Etilenos/metabolismo , Hongos/fisiología , Homoserina/farmacología , Indoles/metabolismo , Solanum lycopersicum/efectos de los fármacos , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/microbiología , Mutación/genética , Desarrollo de la Planta/efectos de los fármacos , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/efectos de los fármacos , Dominios Proteicos , Ácido Salicílico/metabolismo , Transducción de Señal/efectos de los fármacos , Tiazoles/metabolismo
5.
Nat Chem Biol ; 10(6): 450-6, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24776930

RESUMEN

Specific chemicals can prime the plant immune system for augmented defense. ß-aminobutyric acid (BABA) is a priming agent that provides broad-spectrum disease protection. However, BABA also suppresses plant growth when applied in high doses, which has hampered its application as a crop defense activator. Here we describe a mutant of Arabidopsis thaliana that is impaired in BABA-induced disease immunity (ibi1) but is hypersensitive to BABA-induced growth repression. IBI1 encodes an aspartyl-tRNA synthetase. Enantiomer-specific binding of the R enantiomer of BABA to IBI1 primed the protein for noncanonical defense signaling in the cytoplasm after pathogen attack. This priming was associated with aspartic acid accumulation and tRNA-induced phosphorylation of translation initiation factor eIF2α. However, mutation of eIF2α-phosphorylating GCN2 kinase did not affect BABA-induced immunity but relieved BABA-induced growth repression. Hence, BABA-activated IBI1 controls plant immunity and growth via separate pathways. Our results open new opportunities to separate broad-spectrum disease resistance from the associated costs on plant growth.


Asunto(s)
Aminobutiratos/farmacología , Arabidopsis/efectos de los fármacos , Aspartato-ARNt Ligasa/genética , Aspartato-ARNt Ligasa/metabolismo , Aminobutiratos/química , Arabidopsis/enzimología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Genes de Plantas , Mutación , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/prevención & control , Inmunidad de la Planta/efectos de los fármacos , Inmunidad de la Planta/genética , Estereoisomerismo
6.
Plant Dis ; 100(4): 704-710, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30688613

RESUMEN

Resistance-inducing chemicals can offer broad-spectrum disease protection in crops, but can also affect plant growth and interactions with plant-beneficial microbes. We have evaluated different application methods of ß-aminobutyric acid (BABA) and jasmonic acid (JA) for long-lasting induced resistance in tomato against Botrytis cinerea. In addition, we have studied nontarget effects on plant growth and root colonization by arbuscular mycorrhizal fungi (AMF). Germinating seeds for 1 week in BABA- or JA-containing solutions promoted seed germination efficiency, did not affect plant growth, and induced resistance in 4-week-old plants. When formulating BABA and JA in carboxymethyl cellulose seed coating, only BABA was able to induce resistance in 4-week-old plants. Root treatment of 1-week-old seedlings with BABA or JA also induced resistance in 4-week-old plants. However, this seedling treatment repressed plant growth at higher concentrations of the chemicals, which was particularly pronounced in hydroponically grown plants after BABA treatment. Both seed coating with BABA, and seedling treatments with BABA or JA, did not affect AMF root colonization in soil-grown tomato. Our study has identified commercially feasible application methods of BABA and JA, which induce durable disease resistance in tomato without concurrent impacts on plant growth or colonization by plant-beneficial AMF.

7.
Mol Plant Microbe Interact ; 26(11): 1334-44, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24088017

RESUMEN

Selected stimuli can prime the plant immune system for a faster and stronger defense reaction to pathogen attack. Pretreatment of Arabidopsis with the chemical agent ß-aminobutyric acid (BABA) augmented H2O2 and callose production after induction with the pathogen-associated molecular pattern (PAMP) chitosan, or inoculation with the necrotrophic fungus Plectosphaerella cucumerina. However, BABA failed to prime H2O2 and callose production after challenge with the bacterial PAMP Flg22. Analysis of Arabidopsis mutants in reactive oxygen species (ROS) production (rbohD) or ROS scavenging (pad2, vtc1, and cat2) suggested a regulatory role for ROS homeostasis in priming of chitosan- and P. cucumerina-inducible callose and ROS. Moreover, rbohD and pad2 were both impaired in BABA-induced resistance against P. cucumerina. Gene expression analysis revealed direct induction of NADPH/respiratory burst oxidase protein D (RBOHD), γ-glutamylcysteine synthetase 1 (GSH1), and vitamin C defective 1 (VTC1) genes after BABA treatment. Conversely, ascorbate peroxidase 1 (APX1) transcription was repressed by BABA after challenge with chitosan or P. cucumerina, probably to provide a more oxidized environment in the cell and facilitate augmented ROS accumulation. Measuring ratios between reduced and oxidized glutathione confirmed that augmented defense expression in primed plants is associated with a more oxidized cellular status. Together, our data indicate that an altered ROS equilibrium is required for augmented defense expression in primed plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Ascomicetos/fisiología , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta , Especies Reactivas de Oxígeno/metabolismo , Aminobutiratos/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ascorbato Peroxidasas/genética , Ascorbato Peroxidasas/metabolismo , Quitosano/farmacología , Dipéptidos/metabolismo , Regulación de la Expresión Génica de las Plantas , Glucanos/metabolismo , Glutamato-Cisteína Ligasa/genética , Glutamato-Cisteína Ligasa/metabolismo , Homeostasis , Peróxido de Hidrógeno/metabolismo , Modelos Biológicos , Mutación , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , Fenotipo , Enfermedades de las Plantas/microbiología , Transducción de Señal
8.
Plant Physiol ; 158(2): 835-43, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22209872

RESUMEN

An attack of plants by pathogens or treatment with certain resistance-inducing compounds can lead to the establishment of a unique primed state of defense. Primed plants show enhanced defense reactions upon further challenge with biotic or abiotic stress. Here, we report that the primed state in Arabidopsis (Arabidopsis thaliana) is still functional in the next generation without additional treatment. We compared the reactions of Arabidopsis plants that had been either primed with ß-amino-butyric acid (BABA) or with an avirulent isolate of the bacteria Pseudomonas syringae pv tomato (PstavrRpt2). The descendants of primed plants showed a faster and higher accumulation of transcripts of defense-related genes in the salicylic acid signaling pathway and enhanced disease resistance upon challenge inoculation with a virulent isolate of P. syringae. In addition, the progeny of primed plants was also more resistant against the oomycete pathogen Hyaloperonospora arabidopsidis. When transgenerationally primed plants were subjected to an additional priming treatment, their descendants displayed an even stronger primed phenotype, suggesting that plants can inherit a sensitization for the priming phenomenon. Interestingly, this primed to be primed phenotype was much reduced in the Arabidopsis ß-amino-butyric acid priming mutant ibs1 (induced BABA sterility1). Our results demonstrate that the primed state of plants is transferred to their progeny and confers improved protection from pathogen attack as compared to the descendants of unprimed plants.


Asunto(s)
Adaptación Fisiológica , Arabidopsis/fisiología , Estrés Fisiológico , Arabidopsis/microbiología , Metilación de ADN , Regiones Promotoras Genéticas , Pseudomonas syringae/aislamiento & purificación
9.
Plant Physiol ; 158(2): 844-53, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22147520

RESUMEN

Systemic acquired resistance (SAR) is a plant immune response to pathogen attack. Recent evidence suggests that plant immunity involves regulation by chromatin remodeling and DNA methylation. We investigated whether SAR can be inherited epigenetically following disease pressure by Pseudomonas syringae pv tomato DC3000 (PstDC3000). Compared to progeny from control-treated Arabidopsis (Arabidopsis thaliana; C(1)), progeny from PstDC3000-inoculated Arabidopsis (P(1)) were primed to activate salicylic acid (SA)-inducible defense genes and were more resistant to the (hemi)biotrophic pathogens Hyaloperonospora arabidopsidis and PstDC3000. This transgenerational SAR was sustained over one stress-free generation, indicating an epigenetic basis of the phenomenon. Furthermore, P(1) progeny displayed reduced responsiveness of jasmonic acid (JA)-inducible genes and enhanced susceptibility to the necrotrophic fungus Alternaria brassicicola. This shift in SA- and JA-dependent gene responsiveness was not associated with changes in corresponding hormone levels. Instead, chromatin immunoprecipitation analyses revealed that SA-inducible promoters of PATHOGENESIS-RELATED GENE1, WRKY6, and WRKY53 in P(1) plants are enriched with acetylated histone H3 at lysine 9, a chromatin mark associated with a permissive state of transcription. Conversely, the JA-inducible promoter of PLANT DEFENSIN1.2 showed increased H3 triple methylation at lysine 27, a mark related to repressed gene transcription. P(1) progeny from the defense regulatory mutant non expressor of PR1 (npr1)-1 failed to develop transgenerational defense phenotypes, demonstrating a critical role for NPR1 in expression of transgenerational SAR. Furthermore, the drm1drm2cmt3 mutant that is affected in non-CpG DNA methylation mimicked the transgenerational SAR phenotype. Since PstDC3000 induces DNA hypomethylation in Arabidopsis, our results suggest that transgenerational SAR is transmitted by hypomethylated genes that direct priming of SA-dependent defenses in the following generations.


Asunto(s)
Arabidopsis/inmunología , Arabidopsis/genética , Metilación de ADN , Genes de Plantas , Regiones Promotoras Genéticas
10.
Quant Plant Biol ; 4: e2, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37077700

RESUMEN

Abscisic acid (ABA) is a plant hormone well known to regulate abiotic stress responses. ABA is also recognised for its role in biotic defence, but there is currently a lack of consensus on whether it plays a positive or negative role. Here, we used supervised machine learning to analyse experimental observations on the defensive role of ABA to identify the most influential factors determining disease phenotypes. ABA concentration, plant age and pathogen lifestyle were identified as important modulators of defence behaviour in our computational predictions. We explored these predictions with new experiments in tomato, demonstrating that phenotypes after ABA treatment were indeed highly dependent on plant age and pathogen lifestyle. Integration of these new results into the statistical analysis refined the quantitative model of ABA influence, suggesting a framework for proposing and exploiting further research to make more progress on this complex question. Our approach provides a unifying road map to guide future studies involving the role of ABA in defence.

11.
Front Plant Sci ; 13: 836326, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35498717

RESUMEN

Exposure of plants to stress conditions or to certain chemical elicitors can establish a primed state, whereby responses to future stress encounters are enhanced. Stress priming can be long-lasting and likely involves epigenetic regulation of stress-responsive gene expression. However, the molecular events underlying priming are not well understood. Here, we characterise epigenetic changes in tomato plants primed for pathogen resistance by treatment with ß-aminobutyric acid (BABA). We used whole genome bisulphite sequencing to construct tomato methylomes from control plants and plants treated with BABA at the seedling stage, and a parallel transcriptome analysis to identify genes primed for the response to inoculation by the fungal pathogen, Botrytis cinerea. Genomes of plants treated with BABA showed a significant reduction in global cytosine methylation, especially in CHH sequence contexts. Analysis of differentially methylated regions (DMRs) revealed that CHH DMRs were almost exclusively hypomethylated and were enriched in gene promoters and in DNA transposons located in the chromosome arms. Genes overlapping CHH DMRs were enriched for a small number of stress response-related gene ontology terms. In addition, there was significant enrichment of DMRs in the promoters of genes that are differentially expressed in response to infection with B. cinerea. However, the majority of genes that demonstrated priming did not contain DMRs, and nor was the overall distribution of methylated cytosines in primed genes altered by BABA treatment. Hence, we conclude that whilst BABA treatment of tomato seedlings results in characteristic changes in genome-wide DNA methylation, CHH hypomethylation appears only to target a minority of genes showing primed responses to pathogen infection. Instead, methylation may confer priming via in-trans regulation, acting at a distance from defence genes, and/or by targeting a smaller group of regulatory genes controlling stress responses.

12.
Curr Opin Plant Biol ; 68: 102229, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35567925

RESUMEN

Plants have proficient tools that allow them to survive interactions with pathogens. Upon attack, they respond with specific countermeasures, which are controlled by the immune system. However, defences can fail and this failure exposes plants to fast-spreading devastation. Trees face similar challenges to other plants and their immune system allows them to mount defences against pathogens. However, their slow growth, longevity, woodiness, and size can make trees a challenging system to study. Here, we review scientific successes in plant systems, highlight the key challenges and describe the enormous opportunities for pathology research in trees. We discuss the benefits that scaling-up our understanding on tree-pathogen interactions can provide in the fight against plant pathogenic threats.


Asunto(s)
Plantas , Árboles
13.
Mol Plant Microbe Interact ; 24(2): 183-93, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20955078

RESUMEN

Callose deposition in Arabidopsis has emerged as a popular model system to quantify activity of plant immunity. However, there has been a noticeable rise in contradicting reports about the regulation of pathogen-induced callose. To address this controversy, we have examined the robustness of callose deposition under different growth conditions and in response to two different pathogen-associated molecular patterns, the flagellin epitope Flg22 and the polysaccharide chitosan. Based on a commonly used hydroponic culture system, we found that variations in growth conditions have a major impact on the plant's overall capacity to deposit callose. This environmental variability correlated with levels of hydrogen peroxide (H2O2) production. Depending on the growth conditions, pretreatment with abscissic acid stimulated or repressed callose deposition. Despite a similar effect of growth conditions on Flg22- and chitosan-induced callose, both responses showed differences in timing, tissue responsiveness, and colocalization with H2O2. Furthermore, mutant analysis revealed that Flg22- and chitosan-induced callose differ in the requirement for the NADPH oxidase RBOHD, the glucosinolate regulatory enzymes VTC1 and PEN2, and the callose synthase PMR4. Our study demonstrates that callose is a multifaceted defense response that is controlled by distinct signaling pathways, depending on the environmental conditions and the challenging pathogen-associated molecular pattern.


Asunto(s)
Arabidopsis/metabolismo , Glucanos/metabolismo , Transducción de Señal/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Quitosano/farmacología , Epítopos/toxicidad , Flagelina/toxicidad , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/fisiología , Peróxido de Hidrógeno/metabolismo , Enfermedades de las Plantas/inmunología , Plantones
14.
Trends Plant Sci ; 26(7): 685-691, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33531282

RESUMEN

To be protected from biological threats, plants have evolved an immune system comprising constitutive and inducible defenses. For example, upon perception of certain stimuli, plants can develop a conditioned state of enhanced defensive capacity against upcoming pathogens and pests, resulting in a phenotype called 'induced resistance' (IR). To tackle the confusing lexicon currently used in the IR field, we propose a widely applicable code of practice concerning the terminology and description of IR phenotypes using two main phenotypical aspects: local versus systemic resistance, and direct versus primed defense responses. Our general framework aims to improve uniformity and consistency in future scientific communication, which should help to avoid further misinterpretations and facilitate the accessibility and impact of this research field.

15.
Metabolites ; 10(3)2020 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-32155921

RESUMEN

Tomato is a major crop suffering substantial yield losses from diseases, as fruit decay at a postharvest level can claim up to 50% of the total production worldwide. Due to the environmental risks of fungicides, there is an increasing interest in exploiting plant immunity through priming, which is an adaptive strategy that improves plant defensive capacity by stimulating induced mechanisms. Broad-spectrum defence priming can be triggered by the compound ß-aminobutyric acid (BABA). In tomato plants, BABA induces resistance against various fungal and bacterial pathogens and different methods of application result in durable protection. Here, we demonstrate that the treatment of tomato plants with BABA resulted in a durable induced resistance in tomato fruit against Botrytis cinerea, Phytophthora infestans and Pseudomonas syringae. Targeted and untargeted metabolomics were used to investigate the metabolic regulations that underpin the priming of tomato fruit against pathogenic microbes that present different infection strategies. Metabolomic analyses revealed major changes after BABA treatment and after inoculation. Remarkably, primed responses seemed specific to the type of infection, rather than showing a common fingerprint of BABA-induced priming. Furthermore, top-down modelling from the detected metabolic markers allowed for the accurate prediction of the measured resistance to fruit pathogens and demonstrated that soluble sugars are essential to predict resistance to fruit pathogens. Altogether, our results demonstrate that metabolomics is particularly insightful for a better understanding of defence priming in fruit. Further experiments are underway in order to identify key metabolites that mediate broad-spectrum BABA-induced priming in tomato fruit.

16.
Mol Plant ; 13(10): 1455-1469, 2020 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-32717347

RESUMEN

External and internal signals can prime the plant immune system for a faster and/or stronger response to pathogen attack. ß-aminobutyric acid (BABA) is an endogenous stress metabolite that induces broad-spectrum disease resistance in plants. BABA perception in Arabidopsis is mediated by the aspartyl tRNA synthetase IBI1, which activates priming of multiple immune responses, including callose-associated cell wall defenses that are under control by abscisic acid (ABA). However, the immediate signaling components after BABA perception by IBI1, as well as the regulatory role of ABA therein, remain unknown. Here, we have studied the early signaling events controlling IBI1-dependent BABA-induced resistance (BABA-IR), using untargeted transcriptome and protein interaction analyses. Transcriptome analysis revealed that IBI1-dependent expression of BABA-IR against the biotrophic oomycete Hyaloperonospora arabidopsidis is associated with suppression of ABA-inducible abiotic stress genes. Protein interaction studies identified the VOZ1 and VOZ2 transcription factors (TFs) as IBI1-interacting partners, which are transcriptionally induced by ABA but suppress pathogen-induced expression of ABA-dependent genes. Furthermore, we show that VOZ TFs require nuclear localization for their contribution to BABA-IR by mediating augmented expression of callose-associated defense. Collectively, our study indicates that the IBI1-VOZ signaling module channels pathogen-induced ABA signaling toward cell wall defense while simultaneously suppressing abiotic stress-responsive genes.


Asunto(s)
Ácido Abscísico/metabolismo , Aminobutiratos/metabolismo , Proteínas de Arabidopsis/metabolismo , Glucanos/metabolismo , Factores de Transcripción/metabolismo , Pared Celular/metabolismo , Resistencia a la Enfermedad , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Mutación/genética , Filogenia
17.
Fungal Biol ; 123(8): 558-564, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31345410

RESUMEN

Plant fungal pathogens place considerable strain on agricultural productivity and threaten global food security. In recent decades, advances in crop breeding, farming practice and the agrochemical industry have allowed crop yields to keep pace with food demand. In this opinion article, we speculate on which recent technological advances will allow us to maintain this situation into the future. We take inspiration that it is 25 y since the first plant disease resistance genes were cloned, and imagine if and how agricultural control of pathogens will be achieved by the year 2044. We examine which technologies are best poised to make the jump from lab bench to field application, and propose that future control measures will likely depend on effective integrated disease management.


Asunto(s)
Productos Agrícolas/microbiología , Hongos/fisiología , Enfermedades de las Plantas/microbiología , Productos Agrícolas/química , Resistencia a la Enfermedad , Abastecimiento de Alimentos , Hongos/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología
18.
Plants (Basel) ; 7(4)2018 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-30248893

RESUMEN

Humanity faces the challenge of having to increase food production to feed an exponentially growing world population, while crop diseases reduce yields to levels that we can no longer afford. Besides, a significant amount of waste is produced after fruit harvest. Fruit decay due to diseases at a post-harvest level can claim up to 50% of the total production worldwide. Currently, the most effective means of disease control is the use of pesticides. However, their use post-harvest is extremely limited due to toxicity. The last few decades have witnessed the development of safer methods of disease control post-harvest. They have all been included in programs with the aim of achieving integrated pest (and disease) management (IPM) to reduce pesticide use to a minimum. Unfortunately, these approaches have failed to provide robust solutions. Therefore, it is necessary to develop alternative strategies that would result in effective control. Exploiting the immune capacity of plants has been described as a plausible route to prevent diseases post-harvest. Post-harvest-induced resistance (IR) through the use of safer chemicals from biological origin, biocontrol, and physical means has also been reported. In this review, we summarize the successful activity of these different strategies and explore the mechanisms behind. We further explore the concept of priming, and how its long-lasting and broad-spectrum nature could contribute to fruit resistance.

19.
Sci Rep ; 8(1): 14761, 2018 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-30283021

RESUMEN

Progeny of heavily diseased plants develop transgenerational acquired resistance (TAR). In Arabidopsis, TAR can be transmitted over one stress-free generation. Although DNA methylation has been implicated in the regulation of TAR, the relationship between TAR and global DNA methylation remains unknown. Here, we characterised the methylome of TAR-expressing Arabidopsis at different generations after disease exposure. Global clustering of cytosine methylation revealed TAR-related patterns in the F3 generation, but not in the F1 generation. The majority of differentially methylated positions (DMPs) occurred at CG context in gene bodies. TAR in F3 progeny after one initial generation of disease, followed by two stress-free generations, was lower than TAR in F3 progeny after three successive generations of disease. This difference in TAR effectiveness was proportional to the intensity of differential methylation at a sub-set of cytosine positions. Comparison of TAR-related DMPs with previously characterised cytosine methylation in mutation accumulation lines revealed that ancestral disease stress preferentially acts on methylation-labile cytosine positions, but also extends to methylation-stable positions. Thus, the TAR-related impact of ancestral disease extends beyond stochastic variation in DNA methylation. Our study has shown that the Arabidopsis epigenome responds globally to disease in previous generations and we discuss its contribution to TAR.


Asunto(s)
Arabidopsis/genética , ADN de Plantas/metabolismo , Resistencia a la Enfermedad/genética , Epigénesis Genética , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Adaptación Fisiológica/genética , Adaptación Fisiológica/inmunología , Arabidopsis/inmunología , Arabidopsis/metabolismo , Arabidopsis/microbiología , Citosina/metabolismo , Metilación de ADN , ADN de Plantas/genética , ADN de Plantas/inmunología , Patrón de Herencia , Pseudomonas syringae/crecimiento & desarrollo , Pseudomonas syringae/patogenicidad , Estrés Fisiológico/genética , Estrés Fisiológico/inmunología
20.
Annu Rev Plant Biol ; 68: 485-512, 2017 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-28226238

RESUMEN

Priming is an adaptive strategy that improves the defensive capacity of plants. This phenomenon is marked by an enhanced activation of induced defense mechanisms. Stimuli from pathogens, beneficial microbes, or arthropods, as well as chemicals and abiotic cues, can trigger the establishment of priming by acting as warning signals. Upon stimulus perception, changes may occur in the plant at the physiological, transcriptional, metabolic, and epigenetic levels. This phase is called the priming phase. Upon subsequent challenge, the plant effectively mounts a faster and/or stronger defense response that defines the postchallenge primed state and results in increased resistance and/or stress tolerance. Priming can be durable and maintained throughout the plant's life cycle and can even be transmitted to subsequent generations, therefore representing a type of plant immunological memory.


Asunto(s)
Plantas/inmunología , Transducción de Señal , Epigénesis Genética , Interacciones Huésped-Patógeno/inmunología , Fenómenos Fisiológicos de las Plantas , Plantas/genética , Plantas/metabolismo , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA