Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Bioelectromagnetics ; 40(4): 250-259, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30945762

RESUMEN

Artificial light and power frequency magnetic fields are ubiquitous in the built environment. Light is a potent zeitgeber but it is unclear whether power frequency magnetic fields can influence circadian rhythm control. To study this possibility, 8-12-week-old male C57BL/6J mice were exposed for 30 min starting at zeitgeber time 14 (ZT14, 2 h into the dark period of the day) to 50 Hz magnetic fields at 580 µT using a pair of Helmholtz coils and/or a blue LED light at 700 lux or neither. Our experiments revealed an acute adrenal response to blue light, in terms of increased adrenal per1 gene expression, increased serum corticosterone levels, increased time spent sleeping, and decreased locomotor activity (in all cases, P < 0.0001) compared to an unexposed control group. There appeared to be no modulating effect of the magnetic fields on the response to light, and there was also no effect of the magnetic fields alone (in both cases, P > 0.05) except for a decrease in locomotor activity (P < 0.03). Gene expression of the cryptochromes cry1 and cry2 in the adrenals, liver, and hippocampus was also not affected by exposures (in all cases, P > 0.05). In conclusion, these results suggest that 50 Hz magnetic fields do not significantly affect the acute light response to a degree that can be detected in the adrenal response. Bioelectromagnetics. 2019;9999:XX-XX. © 2019 Bioelectromagnetics Society.


Asunto(s)
Ritmo Circadiano , Campos Magnéticos/efectos adversos , Animales , Corticosterona/metabolismo , Criptocromos/genética , Criptocromos/metabolismo , Regulación de la Expresión Génica , Luz , Masculino , Ratones Endogámicos C57BL , Actividad Motora , Especificidad de Órganos , Proteínas Circadianas Period/metabolismo , Sueño
2.
Front Public Health ; 5: 328, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29276705

RESUMEN

There is an extensive literature investigating possible effects of exposure to radiofrequency (RF) electromagnetic fields associated with mobile phone technologies. This has not identified any public health risks with any degree of certainty. Some epidemiological studies have observed associations between heavy users of mobile phones and some types of cancer, but animal studies do not support this association, although a few studies have reported increased tumor yields. However, there is a crucial difference between epidemiology studies and laboratory work in terms of signals investigated: most people are exposed to a complex mixture of frequencies and signals at varying intensities, whereas the majority of animal studies have been performed using a single frequency or intensity. Whether this might explain the differences in outcome will be discussed, and whether there is a need for additional laboratory investigations that reproduce more accurately realistic exposure conditions will be considered.

3.
Exp Neurol ; 295: 144-154, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28602832

RESUMEN

BACKGROUND: Oxidative stress and inflammation exacerbate tissue damage in the brain after ischemic stroke. Dimethyl-fumarate (DMF) and its metabolite monomethyl-fumarate (MMF) are known to stimulate anti-oxidant pathways and modulate inflammatory responses. Considering these dual effects of fumarates, we examined the effect of MMF treatment after ischemic stroke in mice. METHODS: Permanent middle cerebral artery occlusion (pMCAO) was performed using adult, male C57BL/6 mice. Thirty minutes after pMCAO, 20mg/kg MMF was administered intravenously. Outcomes were evaluated 6, 24 and 48h after pMCAO. First, we examined whether a bolus of MMF was capable of changing expression of kelch-like erythroid cell-derived protein with CNC homology-associated protein 1 (Keap1) and nuclear factor erythroid 2-related factor (Nrf)2 in the infarcted brain. Next, we studied the effect of MMF on functional recovery. To explore mechanisms potentially influencing functional changes, we examined infarct volumes, edema formation, the expression of heat shock protein (Hsp)72, hydroxycarboxylic acid receptor 2 (Hcar2), and inducible nitric oxide synthase (iNOS) in the infarcted brain using real-time PCR and Western blotting. Concentrations of a panel of pro- and anti-inflammatory cytokines (IFNγ, IL-1ß, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12p70, TNF) were examined in both the infarcted brain tissue and plasma samples 6, 24 and 48h after pMCAO using multiplex electrochemoluminiscence analysis. RESULTS: Administration of MMF increased the protein level of Nrf2 6h after pMCAO, and improved functional outcome at 24 and 48h after pMCAO. MMF treatment did not influence infarct size, however reduced edema volume at both 24 and 48h after pMCAO. MMF treatment resulted in increased Hsp72 expression in the brain 6h after pMCAO. Hcar2 mRNA levels increased significantly 24h after pMCAO, but were not different between saline- and MMF-treated mice. MMF treatment also increased the level of the anti-inflammatory cytokine IL-10 in the brain and plasma 6h after pMCAO, and additionally reduced the level of the pro-inflammatory cytokine IL-12p70 in the brain at 24 and 48h after pMCAO. CONCLUSIONS: A single intravenous bolus of MMF improved sensory-motor function after ischemic stroke, reduced edema formation, and increased the levels of the neuroprotective protein Hsp72 in the brain. The early increase in IL-10 and reduction in IL-12p70 in the brain combined with changes in systemic cytokine levels may also contribute to the functional recovery after pMCAO.


Asunto(s)
Edema Encefálico/tratamiento farmacológico , Edema Encefálico/etiología , Dimetilfumarato/uso terapéutico , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/tratamiento farmacológico , Animales , Conducta Animal/efectos de los fármacos , Edema Encefálico/psicología , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/patología , Citocinas/biosíntesis , Proteínas de Choque Térmico/biosíntesis , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/patología , Proteína 1 Asociada A ECH Tipo Kelch/biosíntesis , Proteína 1 Asociada A ECH Tipo Kelch/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2/biosíntesis , Factor 2 Relacionado con NF-E2/genética , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo II/metabolismo , Accidente Cerebrovascular/psicología , Resultado del Tratamiento
5.
PLoS One ; 10(7): e0130643, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26147001

RESUMEN

It is well documented that serotonin (5-HT) plays an important role in psychiatric illness. For example, myalgic encephalomyelitis (ME/CFS), which is often provoked by infection, is a disabling illness with an unknown aetiology and diagnosis is based on symptom-specific criteria. However, 5-HT2A receptor expression and peripheral cytokines are known to be upregulated in ME. We sought to examine the relationship between the 5-HT system and cytokine expression following systemic bacterial endotoxin challenge (LPS, 0.5 mg/kg i.p.), at a time when the acute sickness behaviours have largely resolved. At 24 hours post-injection mice exhibit no overt changes in locomotor behaviour, but do show increased immobility in a forced swim test, as well as decreased sucrose preference and reduced marble burying activity, indicating a depressive-like state. While peripheral IDO activity was increased after LPS challenge, central activity levels remained stable and there was no change in total brain 5-HT levels or 5-HIAA/5-HT. However, within the brain, levels of TNF and 5-HT2A receptor mRNA within various regions increased significantly. This increase in receptor expression is reflected by an increase in the functional response of the 5-HT2A receptor to agonist, DOI. These data suggest that regulation of fatigue and depressive-like moods after episodes of systemic inflammation may be regulated by changes in 5-HT receptor expression, rather than by levels of enzyme activity or cytokine expression in the CNS.


Asunto(s)
Modelos Animales de Enfermedad , Fatiga/etiología , Infecciones/complicaciones , Receptor de Serotonina 5-HT2A/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Lipopolisacáridos/administración & dosificación , Masculino , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA