Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 145(16): 9112-9117, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37058550

RESUMEN

Covalent adaptable networks (CANs) represent a novel class of polymeric materials crosslinked by dynamic covalent bonds. Since their first discovery, CANs have attracted great attention due to their high mechanical strength and stability like conventional thermosets under service conditions and easy reprocessability like thermoplastics under certain external stimuli. Here, we report the first example of ionic covalent adaptable networks (ICANs), a type of crosslinked ionomers, consisting of negatively charged backbone structures. More specifically, two ICANs with different backbone compositions were prepared through spiroborate chemistry. Given the dynamic nature of the spiroborate linkages, the resulting ionomer thermosets display rapid reprocessability and closed-loop recyclability under mild conditions. The materials mechanically broken into smaller pieces can be reprocessed into coherent solids at 120 °C within only 1 min with nearly 100% recovery of the mechanical properties. Upon treating the ICANs with dilute hydrochloric acid at room temperature, the valuable monomers can be easily chemically recycled in almost quantitative yield. This work demonstrates the great potential of spiroborate bonds as a novel dynamic ionic linkage for development of new reprocessable and recyclable ionomer thermosets.

2.
ACS Appl Mater Interfaces ; 14(1): 1961-1972, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34931796

RESUMEN

Liquid crystal elastomers (LCEs) exhibit soft elasticity due to the alignment and reorientation of mesogens upon mechanical loading, which provides additional mechanisms to absorb and dissipate energy. This enhanced response makes LCEs potentially transformative materials for biomedical devices, tissue replacements, and protective equipment. However, there is a critical knowledge gap in understanding the highly rate-dependent dissipative behaviors of LCEs due to the lack of real-time characterization techniques that probe the microscale network structure and link it to the mechanical deformation of LCEs. In this work, we employ in situ optical measurements to evaluate the alignment and reorientation degree of mesogens in LCEs. The data are correlated to the quantitative physical analysis using polarized Fourier-transform infrared spectroscopy. The time scale of mesogen alignment is determined at different strain levels and loading rates. The mesogen reorientation kinetics is characterized to establish its relationship with the macroscale tensile strain, and compared to theoretical predictions. Overall, this work provides the first detailed study on the time-dependent evolution of mesogen alignment and reorientation in deformed LCEs. It also provides an effective and more accessible approach for other researchers to investigate the structural-property relationships of different types of polymers.

3.
Nat Chem ; 14(12): 1399-1404, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36163266

RESUMEN

Chemical recycling of polymers is critical for improving the circular economy of plastics and environmental sustainability. Traditional thermoset polymers have generally been considered permanently crosslinked materials that are difficult or impossible to recycle. Herein, we demonstrate that by activating 'dormant' covalent bonds, traditional polycyanurate thermosets can be recycled into the original monomers, which can be circularly reused for their original purpose. Through retrosynthetic analysis, we redirected the synthetic route from forming conventional C-N bonds via irreversible cyanate trimerization to forming the C-O bonds through reversible nucleophilic aromatic substitution of alkoxy-substituted triazine derivatives by alcohol nucleophiles. The new reversible synthetic route enabled the synthesis of previously inaccessible alkyl-polycyanurate thermosets, which exhibit excellent film properties with high chemical resistance, closed-loop recyclability and reprocessing capability. These results show that 'apparently dormant' dynamic linkages can be activated and utilized to construct fully recyclable thermoset polymers with a broader monomer scope and increased sustainability.


Asunto(s)
Plásticos , Polímeros , Polímeros/química , Reciclaje
4.
ACS Appl Mater Interfaces ; 13(7): 8929-8939, 2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33577299

RESUMEN

Three-dimensional (3D) mesostructures are gaining rapidly growing interest due to their potential applications in a broad range of areas. Despite intensive studies, remotely controlled, reversible, on-demand assembly and reconfiguration of 3D mesostructures, which are desired for many applications, including robotics, minimally invasive biomedical devices, and deployable systems, remain a challenge. Here, we introduce a facile strategy to utilize liquid crystal elastomers (LCEs), a soft polymer capable of large, reversible shape changes, as a platform for reversible assembly and programming of 3D mesostructures via compressive buckling of two-dimensional (2D) precursors in a remote and on-demand fashion. The highly stretchable, reversible shape-switching behavior of the LCE substrate, resulting from the soft elasticity of the material and the reversible nematic-isotropic transition of liquid crystal (LC) molecules upon remote thermal stimuli, provides deterministic thermal-mechanical control over the reversible assembly and reconfiguration processes. Demonstrations include experimental results and finite element simulations of 3D mesostructures with diverse geometries and material compositions, showing the versatility and reliability of the approach. Furthermore, a reconfigurable light-emitting system is assembled and morphed between its "on" and "off" status via the LCE platform. These results provide many exciting opportunities for areas from remotely programmable 3D mesostructures to tunable electronic systems.

5.
ACS Appl Mater Interfaces ; 13(11): 12698-12708, 2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33369399

RESUMEN

Polymer foams are an essential class of lightweight materials used to protect assets against mechanical insults, such as shock and vibration. Two features are important to enhance their energy absorption characteristics: the foam structure and the matrix phase mechanical behavior. This study investigates novel approaches to control both of these features to enhance the energy absorption capability of flexible lattice foams. First, we consider 3D printing via digital light processing (DLP) as a method to control the foam mesostructure across a suite of periodic unit cells. Second, we introduce an additional energy dissipation mechanism in the solid matrix phase material by 3D printing the lattice foams with polydomain liquid crystal elastomer (LCE), which undergo a mechanically induced phase transition under large strains. This phase transition is associated with LC mesogen rotation and alignment and provides a second mechanism for mechanical energy dissipation in addition to the viscoelastic relaxation of the polymer network. We contrast the 3D printed LCE lattices with conventional, thermomechanically near-equivalent elastomer lattice foams to quantify the energy-absorbing enhancement the LCE matrix phase provides. Under cyclic quasi-static uniaxial compression conditions, the LCE lattices show dramatically enhanced energy dissipation in uniaxial compression compared to the non-LCE equivalent foams printed with a commercially available photocurable elastomer resin. The lattice geometry also plays a prominent role in determining the energy dissipation ratio between the LCE and non-LCE foams. We show that when increasing the lattice connectivity, the foam deformation transitions from bending-dominated to stretching-dominated deformations, which generates higher axial strains in the struts and higher energy dissipation in the lattice foam, as stretching allows greater mesogen rotation than bending. The LCE foams demonstrate superior energy absorption during the repeated dynamic loading during drop testing compared with the non-LCE equivalent foams, demonstrating the potential of LCEs to enhance physical protection systems against mechanical impact.

6.
Adv Mater ; 32(28): e2000797, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32508011

RESUMEN

Digital Light Processing (DLP) 3D printing enables the creation of hierarchical complex structures with specific micro- and macroscopic architectures that are impossible to achieve through traditional manufacturing methods. Here, this hierarchy is extended to the mesoscopic length scale for optimized devices that dissipate mechanical energy. A photocurable, thus DLP-printable main-chain liquid crystal elastomer (LCE) resin is reported and used to print a variety of complex, high-resolution energy-dissipative devices. Using compressive mechanical testing, the stress-strain responses of 3D-printed LCE lattice structures are shown to have 12 times greater rate-dependence and up to 27 times greater strain-energy dissipation compared to those printed from a commercially available photocurable elastomer resin. The reported behaviors of these structures provide further insight into the much-overlooked energy-dissipation properties of LCEs and can inspire the development of high-energy-absorbing device applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA