RESUMEN
Target cancer therapy has been developed for clinical cancer treatment based on the discovery of CRISPR (clustered regularly interspaced short palindromic repeat) -Cas system. This forefront and cutting-edge scientific technique improves the cancer research into molecular level and is currently widely utilized in genetic investigation and clinical precision cancer therapy. In this review, we summarized the genetic modification by CRISPR/Cas and CRISPR screening system, discussed key components for successful CRISPR screening, including Cas enzymes, guide RNA (gRNA) libraries, target cells or organs. Furthermore, we focused on the application for CAR-T cell therapy, drug target, drug screening, or drug selection in both ex vivo and in vivo with CRISPR screening system. In addition, we elucidated the advantages and potential obstacles of CRISPR system in precision clinical medicine and described the prospects for future genetic therapy.In summary, we provide a comprehensive and practical perspective on the development of CRISPR/Cas and CRISPR screening system for the treatment of cancer defects, aiming to further improve the precision and accuracy for clinical treatment and individualized gene therapy.
Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Neoplasias , Humanos , Sistemas CRISPR-Cas/genética , Neoplasias/genética , Neoplasias/terapia , Edición Génica/métodos , Animales , Terapia Genética/métodos , Terapia Molecular DirigidaRESUMEN
BACKGROUND: Obesity-associated male infertility is a common complication of obesity and has been increasing in prevalence. Blautia wexlerae has modulation effects on obesity. However, the action of B. wexlerae on obesity-associated male infertility is unclear. The nod-like receptor protein 3 (NLRP3) inflammasome has become a major target for addressing many diseases, including obesity-associated male infertility. This study aims to investigate the action of B. wexlerae on obesity-associated male infertility and the influence of B. wexlerae on NLRP3 inflammasome. MATERIALS AND METHODS: The fecal samples were collected from 60 infertile men with or without obesity and 30 healthy men. The obesity mice model was established through high-fat diet (HFD) induction. The mating assays evaluated the male infertility of obese mice. A mouse-derived spermatogonia (GC-1 spg) cell viability was detected using the Cell Counting Kit-8 assay. The reactive oxygen species (ROS) were assessed using flow cytometry. Furthermore, immunofluorescence, enzyme-linked immunosorbent assay, and western blotting were applied to measure the gene expressions. RESULTS: Blautia wexlerae was decreased and negatively correlated with interleukin-1 beta (IL-1ß) or IL-18 levels in infertile men with obesity. On the other hand, B. wexlerae improved the mating capability of obese male mice and suppressed oxidative stress and NLRP3 inflammasome via the activation of the acetate receptor. Furthermore, sodium acetate regulated oxidative stress and NLRP3 inflammasome via the activation of the acetate receptor in GC-1 spg cells in vitro. CONCLUSION: The administration of Blautia wexlerae improved obesity-associated male infertility and regulated oxidative stress and NLRP3 inflammasome activities. In general, its administration may be an effective strategy for the treatment of obesity-associated male infertility.
Asunto(s)
Infertilidad Masculina , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Obesidad , Estrés Oxidativo , Masculino , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Animales , Obesidad/complicaciones , Obesidad/metabolismo , Humanos , Infertilidad Masculina/etiología , Infertilidad Masculina/metabolismo , Inflamasomas/metabolismo , Ratones , Adulto , Especies Reactivas de Oxígeno/metabolismo , Modelos Animales de Enfermedad , Dieta Alta en Grasa , Interleucina-1beta/metabolismo , Ratones Endogámicos C57BLRESUMEN
BACKGROUND: Plasma microRNAs act as biomarkers for predicting and diagnosing diseases. Reliable non-invasive biomarkers for biochemical pregnancy loss have not been established. We aim to analyze the dynamic microRNA profiles during the peri-implantation period and investigate if plasma microRNAs could be non-invasive biomarkers predicting BPL. METHODS: In this study, we collected plasma samples from patients undergoing embryo transfer (ET) on ET day (ET0), 11 days after ET (ET11), and 14 days after ET (ET14). Patients were divided into the NP (negative pregnancy), BPL (biochemical pregnancy loss), and CP (clinical pregnancy) groups according to serum hCG levels at day11~14 and ultrasound at day28~35 following ET. MicroRNA profiles at different time-points were detected by miRNA-sequencing. We analyzed plasma microRNA signatures for BPL at the peri-implantation stage, we characterized the dynamic microRNA changes during the implantation period, constructed a microRNA co-expression network, and established predictive models for BPL. Finally, the sequencing results were confirmed by Taqman RT-qPCR. RESULTS: BPL patients have distinct plasma microRNA profiles compared to CP patients at multiple time-points during the peri-implantation period. Machine learning models revealed that plasma microRNAs could predict BPL. RT-qPCR confirmed that miR-181a-2-3p, miR-9-5p, miR-150-3p, miR-150-5p, and miR-98-5p, miR-363-3p were significantly differentially expressed between patients with different reproductive outcomes. CONCLUSION: Our study highlights the non-invasive value of plasma microRNAs in predicting BPL.
Asunto(s)
Aborto Espontáneo , Biomarcadores , Transferencia de Embrión , MicroARNs , Humanos , Femenino , Embarazo , MicroARNs/sangre , Adulto , Biomarcadores/sangre , Aborto Espontáneo/sangre , Implantación del Embrión , Aprendizaje AutomáticoRESUMEN
BACKGROUND: In recent years, N6-methyladenosine (m6A) methylation modification of mRNA has been studied extensively. It has been reported that m6A determines mRNA fate and participates in many cellular functions and reactions, including oxidative stress. The PLOD2 gene encodes a protein that plays a key role in tissue remodeling and fibrotic processes. METHODS: The m6A methylation and expression levels of PLOD2 were determined by m6A methylated RNA immunoprecipitation sequencing (MeRIP-seq) and MeRIP-quantitative polymerase chain reaction (qPCR) in the testes of varicocele rats compared with control. To determine whether IGF2BP2 had a targeted effect on the PLOD2 mRNA, RNA immunoprecipitation-qPCR (RIP-qPCR) and luciferase assays were performed. CRISPR/dCas13b-ALKBH5 could downregulate m6A methylation level of PLOD2, which plays an important role in PLOD2-mediated cell proliferation and apoptosis in GC-2 cells. RESULTS: PLOD2 was frequently exhibited with high m6A methylation and expression level in the testes of varicocele rats compared with control. In addition, we found that IGF2BP2 binds to the m6A-modified 3' untranslated region (3'-UTR) of PLOD2 mRNA, thereby positively regulating its mRNA stability. Targeted specific demethylation of PLOD2 m6A by CRISPR/dCas13b-ALKBH5 system can significantly decrease the m6A and expression level of PLOD2. Furthermore, demethylation of PLOD2 mRNA dramatically promote GC-2 cell proliferation and inhibit cell apoptosis under oxidative stress. CONCLUSION: As a result, we found that varicocele-induced oxidative stress promoted PLOD2 expression level via m6A methylation modification. In addition, targeting m6A demethylation of PLOD2 by CRISPR/dCas13b-ALKBH5 system can regulate GC-2 cell proliferation and apoptosis under oxidative stress. Taken together, our study has acquired a better understanding of the mechanisms underlying male infertility associated with oxidative stress, as well as a novel therapeutic target for male infertility.
Asunto(s)
Infertilidad Masculina , Varicocele , Masculino , Animales , Ratas , Humanos , Espermatocitos , Regiones no Traducidas 3' , Adenosina , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa , Proteínas de Unión al ARNRESUMEN
Hepatitis B virus (HBV) infection is associated with male infertility. The mechanism includes an increase in chromosomal instability in sperm, which has an adverse effect on sperm viability and function. Sertoli cells (SCs) are vital in spermatogenesis because they use glycolysis to provide energy to germ cells and themselves. HBV infection impairs sperm function. However, whether HBV infection disrupts energy metabolism in SCs remains unclear. This study aimed to determine the role of serum exosomes of HBV-infected patients in SC viability and glycolysis. Serum exosomes were obtained from 30 patients with (HBV+_exo) or without (HBV-_exo) HBV infection using high-speed centrifugation and identified by transmission electron microscopy and western blot analysis. Cell viability is determined by CCK-8 assay. Glycolysis is determined by detecting extracellular acidification rate and ATP levels. miR-122-5p expression levels are detected by quantitative RT-PCR, and a dual-luciferase gene reporter assay confirms the downstream target gene of miR-122-5p. Protein expression is determined by western blot analysis. The results show that HBV+ _exo inhibited cell viability, extracellular acidification rate, and ATP production of SCs. miR-122-5p is highly expressed in HBV+ _exo compared with that in HBV-_exo. Furthermore, HBV+ _exo is efficiently taken up by SCs, whereas miR-122-5p is efficiently transported to SCs. miR-122-5p overexpression downregulates ALDOA expression and inhibits SC viability and glycolysis. However, ALDOA overexpression reverses the effects of miR-122-5p and HBV+ _exo on SC viability and glycolysis. HBV+ _exo may deliver miR-122-5p to target ALDOA and inhibit SC viability and glycolysis, thus providing new therapeutic ideas for treating HBV-associated male infertility.
Asunto(s)
Exosomas , Infertilidad Masculina , MicroARNs , Humanos , Masculino , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Exosomas/metabolismo , Células de Sertoli/metabolismo , Semen/metabolismo , Glucólisis , Infertilidad Masculina/metabolismo , Adenosina Trifosfato/metabolismo , Fructosa-Bifosfato Aldolasa/metabolismoRESUMEN
Sine oculis homeobox 1 (Six1) is an important factor for embryonic development and carcinoma malignancy. However, the localization of Six1 varies due to protein size and cell types in different organs. In this study, we focus on the expression and localization of Six1 in male reproductive organ via bioinformatics analysis and immunofluorescent detection. The potential interacted proteins with Six1 were also predicted by protein-protein interactions (PPIs) and Enrichr analysis. Bioinformatic data from The Cancer Genome Atlas and Genotype-Tissue Expression project databases showed that SIX1 was highly expressed in normal human testis, but low expressed in the testicular germ cell tumor sample. Human Protein Atlas examination verified that SIX1 level was higher in normal than that in cancer samples. The sub-localization of SIX1 in different reproductive tissues varies but specifically in the cytoplasm and membrane in testicular cells. In mouse cells, single cell RNA-sequencing data analysis indicated that Six1 expression level was higher in mouse spermatogonial stem cells (mSSCs) and differentiating spermatogonial than in other somatic cells. Immunofluorescence staining showed the cytoplasmic localization of Six1 in mouse testis and mSSCs. Further PPIs and Enrichr examination showed the potential interaction of Six1 with bone morphogenetic protein 4 (Bmp4) and catenin Beta-1 (CtnnB1) and stem cell signal pathways. Cytoplasmic localization of Six1 in male testis and mSSCs was probably associated with stem cell related proteins Bmp4 and CtnnB1 for stem cell development.
RESUMEN
Aim: This study aimed to identify autophagy-related genes (ARGs) associated with non-obstructive azoospermia and explore the underlying molecular mechanisms. Methods: Two datasets associated with azoospermia were downloaded from the Gene Expression Omnibus database, and ARGs were obtained from the Human Autophagy-dedicated Database. Autophagy-related differentially expressed genes were identified in the azoospermia and control groups. These genes were subjected to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes, protein-protein interaction (PPI) network, and functional similarity analyses. After identifying the hub genes, immune infiltration and hub gene-RNA-binding protein (RBP)-transcription factor (TF)-miRNA-drug interactions were analyzed. Results: A total 46 differentially expressed ARGs were identified between the azoospermia and control groups. These genes were enriched in autophagy-associated functions and pathways. Eight hub genes were selected from the PPI network. Functional similarity analysis revealed that HSPA5 may play a key role in azoospermia. Immune cell infiltration analysis revealed that activated dendritic cells were significantly decreased in the azoospermia group compared to those in the control groups. Hub genes, especially ATG3, KIAA0652, MAPK1, and EGFR were strongly correlated with immune cell infiltration. Finally, a hub gene-miRNA-TF-RBP-drug network was constructed. Conclusion: The eight hub genes, including EGFR, HSPA5, ATG3, KIAA0652, and MAPK1, may serve as biomarkers for the diagnosis and treatment of azoospermia. The study findings suggest potential targets and mechanisms for the occurrence and development of this disease.
Asunto(s)
Azoospermia , MicroARNs , Humanos , Masculino , Azoospermia/genética , Biomarcadores , Biología Computacional , Chaperón BiP del Retículo Endoplásmico , MicroARNs/genética , Receptores ErbBRESUMEN
Background: Studies have revealed that the transplantation of mesenchymal stem cells (MSCs) might be a potential star candidate for premature ovarian failure (POF) in animal experiments. However, individual studies with a small sample size cannot be used to draw a clear conclusion. Therefore, we conducted a systematic review and meta-analysis to explore the potential of using MSCs in the treatment of POF in animals. Methods: Seven databases were searched for studies exploring the effect of the transplantation of MSCs on POF in animal models. The PRISMA guideline was followed, and the methodological quality was ensured using SYRCLE's risk of bias tool. RevMan 5.4 and STATA 12.0 software was performed to meta-analysis. Results: In total, 37 studies involving 1,079 animals were included. Significant associations were found for MSCs with the levels of E2 (SMD 2.69 [95% CI 1.97, 3.41]), FSH (-2.02, [-2.74, -1.30]), primary follicles (2.04, [1.17, 2.92]), secondary follicles (1.93, [1.05, 2.81]), and primordial follicles (2.38, [1.19, 3.57]. Other outcomes, such as AMH, LH, INHB, antral follicles, growing follicles, mature follicles, and early antral were also found to be significant. There was no difference in FSH/LH, corpus leteum, follicles, and estruc cycle. Conclusions: Our meta-analysis result indicated that the transplantation of MSCs might exert therapeutic effects on animal models of POF, and these effects might be associated with improving the disorder of the sexual cycle, modulating serum hormone expressions to a better state, and restoring ovarian function.
Asunto(s)
Menopausia Prematura , Células Madre Mesenquimatosas , Insuficiencia Ovárica Primaria , Femenino , Humanos , Animales , Folículo Ovárico , Hormona Folículo Estimulante/metabolismoRESUMEN
Background: Non-obstructive azoospermia (NOA) is the most severe form of male infertility. Currently, the molecular mechanisms underlying NOA pathology have not yet been elucidated. Hence, elucidation of the mechanisms of NOA and exploration of potential biomarkers are essential for accurate diagnosis and treatment of this disease. In the present study, we aimed to screen for biomarkers and pathways involved in NOA and reveal their potential molecular mechanisms using integrated bioinformatics. Methods: We downloaded two gene expression datasets from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) in NOA and matched the control group tissues were identified using the limma package in R software. Subsequently, Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), gene set enrichment analysis (GSEA), protein-protein interaction (PPI) network, gene-microRNAs network, and transcription factor (TF)-hub genes regulatory network analyses were performed to identify hub genes and associated pathways. Finally, we conducted immune infiltration analysis using CIBERSORT to evaluate the relationship between the hub genes and the NOA immune infiltration levels. Results: We identified 698 common DEGs, including 87 commonly upregulated and 611 commonly downregulated genes in the two datasets. GO analysis indicated that the most significantly enriched gene was protein polyglycylation, and KEGG pathway analysis revealed that the DEGs were most significantly enriched in taste transduction and pancreatic secretion signaling pathways. GSEA showed that DEGs affected the biological functions of the ribosome, focaladhesion, and protein_expor. We further identified the top 31 hub genes from the PPI network, and friends analysis of hub genes in the PPI network showed that NR4A2 had the highest score. In addition, immune infiltration analysis found that CD8+ T cells and plasma cells were significantly correlated with ODF3 expression, whereas naive B cells, plasma cells, monocytes, M2 macrophages, and resting mast cells showed significant variation in the NR4A2 gene expression group, and there were differences in T cell regulatory immune cell infiltration in the FOS gene expression groups. Conclusion: The present study successfully constructed a regulatory network of DEGs between NOA and normal controls and screened three hub genes using integrative bioinformatics analysis. In addition, our results suggest that functional changes in several immune cells in the immune microenvironment may play an important role in spermatogenesis. Our results provide a novel understanding of the molecular mechanisms of NOA and offer potential biomarkers for its diagnosis and treatment.
RESUMEN
Varicocele-related sperm damages are usually caused by oxidative stresses. Growing evidence indicates that lncRNA growth arrested DNA-damage inducible gene 7 (gadd7) is involved in the regulation of the oxidative stress responses. In this study, we measured the expression level of gadd7 in the sperm and found that the expression of gadd7 was significantly up-regulated in patients with varicocele compared with the healthy control. The relative expression level of gadd7 was negatively correlated with the sperm count. Overexpression of gadd7 suppressed cell proliferation and promoted cell apoptosis in mouse spermatocyte-derived cell lines GC-1 and GC-2. Furthermore, the protein level of Bax was raised while Bcl2 expression was reduced after overexpression of gadd7. This work provides a potential novel insight for the varicocele-related sperm impairment and male infertility.
RESUMEN
OBJECTIVE: To explore the effect of warming needling pretreatment for endometrial receptivity before frozen-thawed embryo transfer (FET). METHODS: Fifty-six repeatedly embryo transfer (ET) failure patients with ultrasound showing follicular phase endometrium of C type, hysteroscopy examination presenting endometritis were randomly assigned into an observation group (25 cases) and a control group (31 cases). The patients in the observation group three months before ET were treated with antibiotics in the menstrual period, warming needle (once a day) at Zhongwan (CV 12), Tianshu (ST 25), Guanyuan (CV 4), Zhongji (CV 3), Zigong (EX-CA 1), Liangqiu (ST 34), Zusanli (ST 36), Shangjuxu (ST 37), Xiajuxu (ST 39) after menstruation until the ovulation stopped, and oral administration of progesterone was applied after ovulation. The patients in the control group three months before ET were treated with antibiotics in the menstrual period, and oral administration of progesterone was applied after ovulation. Continuous three menstrual periods were carried out for the both groups. The changes of endometrial thickness, type and endometrial blood flow and the outcome of FET were observed. RESULTS: Endometrial morphology and blood flow were improved after treatment in the two groups (all P<0.01), with better results in the observation group (both P<0.01). The embryo transplantation rate and pregnancy rate in the observation group were higher than those in the control group (both P<0.01), and the early abortion rate decreased (P<0.01). CONCLUSIONS: Warm needling may improve endometrial receptivity, embryo transplantation rate and pregnancy rate and decrease early abortion rate by regulating endometrial morphology and blood flow.