Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Phys Rev Lett ; 132(4): 043601, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38335360

RESUMEN

In standard quantum weak measurements, preselection and postselection of quantum states are implemented in the same photon. Here we go beyond this restrictive setting and demonstrate that the preselection and postselection can be performed in two different photons, if the two photons are polarization entangled. The Pancharatnam-Berry phase metasurface is incorporated in the weak measurement system to perform weak coupling between probe wave function and spin observable. By introducing nonlocal weak measurement into the microscopy imaging system, it allows us to remotely switch different microscopy imaging modes of pure-phase objects, including bright-field, differential, and phase reconstruction. Furthermore, we demonstrate that the nonlocal weak-measurement scheme can prevent almost all environmental noise photons from detection and thus achieves a higher image contrast than the standard scheme at a low photon level. Our results provide the possibility to develop a quantum nonlocal weak-measurement microscope for label-free imaging of transparent biological samples.

2.
Opt Lett ; 48(8): 2014-2017, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-37058630

RESUMEN

Mathematically, any function can be expressed as the operation form of another function. Here, the idea is introduced into an optical system to generate structured light. In the optical system, a mathematical function is represented by an optical field distribution, and any structured light field can be generated by performing different optical analog computations for any input optical field. In particular, optical analog computing has a good broadband performance, as it can be achieved based on the Pancharatnam-Berry phase. Therefore, our scheme can provide a flexible way to generate broadband structured light, and this is theoretically and experimentally demonstrated. It is envisioned that our work may inspire potential applications in high-resolution microscopy and quantum computation.

3.
Opt Lett ; 48(18): 4801-4804, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37707906

RESUMEN

Surface topography detection can extract critical characteristics from objects, playing an important role in target identification and precision measurement. Here, an optical method with the advantages of low power consumption, high speed, and simple devices is proposed to realize the surface topography detection of low-contrast phase objects. By constructing reflected light paths, a metasurface can perform spatial differential operation via receiving the light directly reflected from a target. Therefore, our scheme is experimentally demonstrated as having remarkable universality, which can be used not only for opaque objects, but also for transparent pure phase objects. It provides a new, to the best of our knowledge, application for optical differential metasurfaces in precise detection of microscale surface topography.

4.
Opt Lett ; 47(22): 5754-5757, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37219095

RESUMEN

Optical analog computing operates on the amplitude, phase, polarization, and frequency distributions of the electromagnetic field through the interaction of light and matter. The differentiation operation is widely used in all-optical image processing technology, such as edge detection. Here, we propose a concise way to observe transparent particles, incorporating the optical differential operation that occurs on a single particle. The particle's scattering and cross-polarization components combine into our differentiator. We achieve high-contrast optical images of transparent liquid crystal molecules. The visualization of aleurone grains (the structures that store protein particles in plant cells) in maize seed was experimentally demonstrated with a broadband incoherent light source. Avoiding the interference of stains, our designed method provides the possibility to observe protein particles directly in complex biological tissues.

5.
Opt Lett ; 47(22): 5981-5984, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37219152

RESUMEN

Cascaded operations play an important role in traditional electronic computing systems for the realization of advanced strategies. Here, we introduce the idea of cascaded operations into all-optical spatial analog computing. The single function of the first-order operation has difficulty meeting the requirements of practical applications in image recognition. The all-optical second-order spatial differentiators are implemented by cascading two first-order differential operation units, and the image edge detection of amplitude and phase objects are demonstrated. Our scheme provides a possible pathway toward the development of compact multifunctional differentiators and advanced optical analog computing networks.

6.
Opt Lett ; 47(4): 846-849, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35167540

RESUMEN

In modern optics, there are two general models to describe the behavior of light in graphene: the zero-thickness model and the slab model. The difference in physical phenomena predicted by the two models is very small, which is hardly distinguished by traditional measurement methods. Therefore, which model can describe the light-matter interaction in graphene more exactly is still a challenging issue. In this work, based on the sensitive optical phenomenon called the photonic spin Hall effect, the small difference can be magnified to a detectable level by the weak-value amplification. The experimental results show that the zero-thickness model can more accurately describe the interaction between light and monolayer or bilayer graphene, while the case of more than two layers, which can no longer be regarded as two-dimensional thickness, should be described by the slab model. Our results may provide information on light interacting with graphene for future investigation in photonics and optoelectronics.

7.
Opt Lett ; 47(4): 925-928, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-35167560

RESUMEN

Bright-field imaging and edge imaging can extract different characteristics from objects, and therefore play important roles in image processing and pattern recognition. Here, we propose a fast, convenient, and electrically driven adjustable scheme to achieve tunable edge-enhanced images based on computing metasurfaces. The computing metasurface can perform spatial differential operation as optical waves propagate through it. This optical differential operation is polarization-dependent, thus any desirable contrast can be realized by the interplay between two orthogonal polarization components. By regulating the external voltages applied on the liquid-crystal phase plate, different phase retardances between two orthogonal polarization components are introduced; this allows us to quickly switch between the bright-field image and the edge image.

8.
Phys Rev Lett ; 128(19): 193601, 2022 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-35622048

RESUMEN

By solving the Maxwell's equations in Fourier space, we find that the cross-polarized component of the dipole scattering field can be written as the second-order spatial differentiation of the copolarized component. This differential operation can be regarded as intrinsic which naturally arises as consequence of the transversality of electromagnetic fields. By introducing the intrinsic spatial differentiation into heralded single-photon microscopy imaging technique, it makes the structure of pure-phase object clearly visible at low photon level, avoiding any biophysical damages to living cells. Based on the polarization entanglement, the switch between dark-field imaging and bright-field imaging is remotely controlled in the heralding arm. This research enriches both fields of optical analog computing and quantum microscopy, opening a promising route toward a nondestructive imaging of living biological systems.


Asunto(s)
Microscopía , Fotones , Diferenciación Celular
9.
Proc Natl Acad Sci U S A ; 116(23): 11137-11140, 2019 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-31101711

RESUMEN

Optical edge detection is a useful method for characterizing boundaries, which is also in the forefront of image processing for object detection. As the field of metamaterials and metasurface is growing fast in an effort to miniaturize optical devices at unprecedented scales, experimental realization of optical edge detection with metamaterials remains a challenge and lags behind theoretical proposals. Here, we propose a mechanism of edge detection based on a Pancharatnam-Berry-phase metasurface. We experimentally demonstrated broadband edge detection using designed dielectric metasurfaces with high optical efficiency. The metasurfaces were fabricated by scanning a focused laser beam inside glass substrate and can be easily integrated with traditional optical components. The proposed edge-detection mechanism may find important applications in image processing, high-contrast microscopy, and real-time object detection on compact optical platforms such as mobile phones and smart cameras.

10.
Opt Express ; 28(19): 27258-27267, 2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32988022

RESUMEN

It has been known that an optical vortex with a topological charge ±2 can be generated as a circularly polarized (CP) light beam propagates in a bulk uniaxial crystal, but its physical origin remains obscure which also hinders its practical applications. Here, through a rigorous full-wave analyses on the problem, we show that, as a CP beam possessing a particular spin (handedness) propagates inside a uniaxial crystal, two beams with opposite spins can be generated caused by the unique spin-sensitive light-matter interactions in the anisotropic medium. Flipping the spin can offer the light beam an vortex phase with a topological charge of ±2 owing to the Pancharatnam-Berry mechanism, with efficiency dictated by the material properties of the uniaxial medium and the topological structure of the beam itself. With its physical origin fully uncovered, we finally discuss how to improve the efficiency of such effect, and compare the mechanisms of vortex generations in different systems. Our findings not only provide deeper understandings on such an intriguing effect, but also shed light on other spin-orbit-interaction-induced effects.

11.
Opt Lett ; 45(24): 6867-6870, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33325916

RESUMEN

Optical analog computing has attracted widespread attention in recent decades due to its advantages of lower consumption, higher efficiency, and real-time imaging in image processing. Here, we propose a two-dimensional optical analog computing scheme based on the Brewster effect. We experimentally demonstrate two-dimensional edge detection with high efficiency. By combining microscopy, our approach may develop some significant applications in cellular and molecular imaging.

12.
Opt Lett ; 45(4): 877-880, 2020 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-32058494

RESUMEN

Unlike the conventional spin Hall effect of light (SHEL) originating from the light-matter interaction, the spin-dependent splitting in the geometric SHEL is purely a geometric effect and independent from the properties of matter. Here it is shown that the geometric SHEL is not only of fundamental theoretical interest in understanding the spin-orbit interaction of light, but also sheds light on important technological applications. This Letter describes the theoretical foundation and experimental realization of optical differential operation and one-dimensional edge detection based on the geometric SHEL.

13.
Opt Lett ; 44(2): 207-210, 2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-30644862

RESUMEN

The photonic spin Hall effect (SHE) manifests itself as the transverse and in-plane spin-dependent shifts of a light beam. Normally, the spin shifts are tiny due to the weak spin-orbit coupling. Therefore, it is very important and interesting to explore some effective methods for enhancing this phenomenon. In this Letter, we theoretically propose and experimentally verify a simple method for obtaining large and asymmetric in-plane spin angular shifts when an arbitrary linearly polarized beam reflects near the critical angle (for total internal reflection). The universal expressions of spatial and angular shifts are deduced. Remarkably, by modulating the incident and polarization angles, the left- and right-handed circularly polarized components can be distinguished directly.

14.
Opt Express ; 26(18): 23705-23713, 2018 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-30184867

RESUMEN

We examine the Goos-Hänchen (GH) effect for a Gaussian beam impinging on the surface of silicene whose topological phase transitions can be modulated by external electric field and/or irradiating circular polarized light. It is shown that both the spatial and angular shifts in GH effect present a sharp jump due to the topological phase transitions. The transitional GH effect can be attributed to transitional optical conductivity, which relates to Berry curvature and Chern numbers. These results can be extensively extended to other two-dimensional atomic crystals in graphene family. We believe that the transitional GH effect may offer a possible way to determine the Berry curvature, Chern numbers, and topological phase transition by a direct optical measurement.

15.
Opt Lett ; 43(15): 3570-3573, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-30067626

RESUMEN

We propose a simple, efficient, and fast tunable method to generate arbitrary vector vortex beams on the hybrid-order Poincaré sphere in an electrically driven way. The scheme incorporates the tunability and switching capabilities of liquid crystals into dielectric metasurfaces to form an efficient vector vortex beam generator. By applying certain voltages on the liquid crystal phase retarder, the generator converts a linearly polarized Gaussian beam into any desirable vector vortex beams. We demonstrate that the evolution route of the corresponding vector vortex states is just a closed circuit on the hybrid-order Poincaré sphere when the phase retardation varies from 0 to 2π. Several special cases are selected to demonstrate our scheme, and the experimental results coincide well with the theoretical predictions.

16.
Rep Prog Phys ; 80(6): 066401, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28357995

RESUMEN

The spin Hall effect (SHE) of light, as an analogue of the SHE in electronic systems, is a promising candidate for investigating the SHE in semiconductor spintronics/valleytronics, high-energy physics and condensed matter physics, owing to their similar topological nature in the spin-orbit interaction. The SHE of light exhibits unique potential for exploring the physical properties of nanostructures, such as determining the optical thickness, and the material properties of metallic and magnetic thin films and even atomically thin two-dimensional materials. More importantly, it opens a possible pathway for controlling the spin states of photons and developing next-generation photonic spin Hall devices as a fundamental constituent of the emerging spinoptics. In this review, based on the viewpoint of the geometric phase gradient, we give a detailed presentation of the recent advances in the SHE of light and its applications in precision metrology and future spin-based photonics.

17.
Opt Express ; 25(10): 11564-11573, 2017 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-28788720

RESUMEN

We examine the geometric phase Doppler effect that appears when a structured light interacts with a rotating structured material. In our scheme the structured light possesses a vortex phase and the structured material works as an inhomogeneous anisotropic plate. We show that the Doppler effect manifests itself as a frequency shift which can be interpreted in terms of a dynamic evolution of Pancharatnam-Berry phase on the hybrid-order Poincaré sphere. The frequency shift induced by the change rate of Pancharatnam-Berry phase with time is derived from both the Jones matrix calculations and the theory of the hybrid-order Poincaré sphere. Unlike the conventional rotational Doppler effect, the frequency shift is proportional to the variation of total angular momentum of light beam, irrespective of the orbital angular momentum of input beams.

18.
Opt Express ; 25(1): 30-38, 2017 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-28085809

RESUMEN

We report a wavelength-locked cladding-pumped ytterbium-doped fiber laser that can simultaneously emit radially and azimuthally polarized beams based on Pancharatnam-Berry phase optical elements. Multi-wavelength free running operation of the radially and azimuthally polarized laser beams can be switched to a single-wavelength one assisted by volume Bragg grating, with wavelength locked at around 1053.4 nm and spectral linewidth of 0.06 nm (FWHW). By rotating the glan-taylor polarizer, we can obtain switchable radially and azimuthally polarized beams output. The radially and azimuthally polarized beams mode purity can maintain 97.3% and 96.3% at maximum output power, and the polarization extinction ratio (PER) can reach 97.8% and 95.9% for the radially and azimuthally polarized laser, respectively.

19.
Opt Lett ; 42(17): 3447-3450, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28957059

RESUMEN

We report direct measurements of the Pancharatnam-Berry (PB) phase in mode transformations on a hybrid-order Poincaré sphere. This geometric phase arises when the vector vortex states undergo a cyclic transformation over a closed circuit on a hybrid-order Poincaré sphere. The measured PB phase is proportional to the solid angle of the closed circuit, as well as to the variation of the total angular momenta between north and south poles. More importantly, a zero PB phase has been demonstrated, despite the vector vortex states taken through a closed circuit on the hybrid-order Poincaré sphere. This interesting phenomenon can be explained as being due to the zero Berry curvature.

20.
Opt Lett ; 42(20): 4135-4138, 2017 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-29028031

RESUMEN

We propose a simple method for the precise identification of graphene layers at the air-prism interface via a pseudo-Brewster angle, where the horizontally polarized reflection is close to zero. We find that the pseudo-Brewster angle is sensitive to the variation of graphene layers where the pseudo-Brewster angle is approximately linearly increased about 0.5 deg as the layer numbers increased. Furthermore, the sensitivity of the pseudo-Brewster angle can be greatly enhanced and reaches 0.04 deg by eliminating the influence of the cross-polarization effect. Our scheme can provide a simple and effective method to identify the layer numbers of graphene.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA