Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; 20(2): e2305625, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37658509

RESUMEN

Highly symmetrical and streamlined nanostructures possessing unique electron scattering, electron-phonon coupling, and electron confinement characteristics have attracted a lot of attention. However, the controllable synthesis of such a nanostructure with regulated shapes and sizes remains a huge challenge. In this work, a peanut-like MnO@C structure, assembled by two core-shell nanosphere is developed via a facile hydrogen ion concentration regulation strategy. Off-axis electron holography technique, charge reconstruction, and COMSOL Multiphysics simulation jointly reveal the unique electronic distribution and confirm its higher dielectric sensitive ability, which can be used as microwave absorption to deal with currently electromagnetic pollution. The results reveal that the peanut-like core-shell MnO@C exhibits great wideband properties with effective absorption bandwidth of 6.6 GHz, covering 10.8-17.2 GHz band. Inspired by this structure-induced sensitively dielectric behavior, promoting the development of symmetrical and streamlined nanostructure would be attractive for many other promising applications in the future, such as piezoelectric material and supercapacitor and electromagnetic shielding.

2.
Small ; : e2402729, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39077957

RESUMEN

Interface design has enormous potential for the enhancement of interfacial polarization and microwave absorption properties. However, the construction of interfaces is always limited in components of a single dimension. Developing systematic strategies to customize multidimensional interfaces and fully utilize advantages of low-dimensional materials remains challenging. Two-dimensional transition metal dichalcogenides (TMDCs) have garnered significant attention owing to their distinctive electrical conductivity and exceptional interfacial effects. In this study, a series of hollow TMDCs@C fibers are synthesized via sacrificial template of CdS and confined growth of TMDCs embedded in the fibers. The complex permittivity of the hollow TMDCs@C fibers can be adjusted by tuning the content of CdS templates. Importantly, the multidimensional interfaces of the fibers contribute to elevating the microwave absorption performance. Among the hollow TMDCs@C fibers, the minimum reflection loss (RLmin) of the hollow MoS2@C fibers can reach -52.0 dB at the thickness of 2.5 mm, with a broad effective absorption bandwidth of 4.56 GHz at 2.0 mm. This work establishes an alternative approach for constructing multidimensional coupling interfaces and optimizing TMDCs as microwave absorption materials.

3.
Adv Mater ; 36(24): e2313411, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38469974

RESUMEN

Precise manipulation of van der Waals forces within 2D atomic layers allows for exact control over electron-phonon coupling, leading to the exceptional quantum properties. However, applying this technique to diverse structures such as 3D materials is challenging. Therefore, investigating new hierarchical structures and different interlayer forces is crucial for overcoming these limitations and discovering novel physical properties. In this work, a multishelled ferromagnetic material with controllable shell numbers is developed. By strategically regulating the magnetic interactions between these shells, the magnetic properties of each shell are fine-tuned. This approach reveals distinctive magnetic characteristics including regulated magnetic domain configurations and enhanced effective fields. The nanoscale magnetic interactions between the shells are observed and analyzed, which shed light on the modified magnetic properties of each shell, enhancing the understanding and control of ferromagnetic materials. The distinctive magnetic interaction significantly boosts electromagnetic absorption at low-frequency frequencies used by fifth-generation wireless devices, outperforming ferromagnetic materials without multilayer structures by several folds. The application of magnetic interactions in materials science reveals thrilling prospects for technological and electronic innovation.

4.
ACS Appl Mater Interfaces ; 16(36): 47832-47843, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39192455

RESUMEN

The construction of heterogeneous microstructure and the selection of multicomponents have turned into a research hotspot in developing ultralight, multifunctional, high-efficiency electromagnetic wave absorbing (EMA) materials. Although aerogels are promising materials to fulfill the above requirements, the increase in functional fillers inevitably leads to the deterioration of intrinsic properties. Tuning the electromagnetic properties from the structural design point of view remains a difficult challenge. Herein, we design customized pore creation strategies via introducing sacrificial templates to optimize the conductive path and construct the discontinuous dielectric medium, increasing dielectric loss and achieving efficient microwave absorption properties. A 3D porous composite (MEM) was crafted, which encapsulated an EVA/FeCoNi (EVA/MNPs) framework with Ti3C2Tx MXene coating by employing a direct heated cross-linking and immersion method. Controllable adjustment of the conductive network inside the porous structure and regulation of the dielectric character are achieved by porosity variation. Eventually, the MEM-5 with a porosity of 66.67% realizes RLmin of -39.2 dB (2.2 mm) and can cover the entire X band. Moreover, through off-axis electronic holography and the calculation of conduction loss and polarization loss, the dielectric property is deeply investigated, and the inner mechanism of optimization is pointed out. Thanks to the inherent characteristic of EVA and the porous structure, MEM-5 showed excellent thermal insulating and superior compressibility, which can maintain 60 °C on a 90-100 °C continuous heating stage and reached a maximum compressive strength of 60.12 kPa at 50% strain. Conceivably, this work provides a facile method for the fabrication of highly efficient microwave absorbers applied under complex conditions.

5.
ACS Appl Mater Interfaces ; 15(23): 28410-28420, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37266580

RESUMEN

Intrinsically conductive polymers have attracted much attention in the electromagnetic interference (EMI) shielding field because of their high conductivity and favorable flexibility. Delocalized π-electrons migrating along the conjugated long-chain structures can form a current. Based on this special conductive mechanism, the doping process significantly influences the conductivity and EMI shielding efficiency (SE). However, it is challenging to investigate the influence of the doping process on EMI shielding performance, which would enable the optimization of dopant selection. In this study, dopant engineering was explored for controllable conductivity, EMI SE, and mechanical properties. Polypyrrole (PPy) doped with various dopants serves as a conductive coating owing to its adjustable conductivity and abundant functional groups. Elastic thermoplastic polyurethane was chosen as the porous framework because of its high tensile strength, and magnetic nanoparticles supplied the magnetic loss in the 3D network. Eventually, the composite film showed the best properties when PPy was doped with sodium p-toluenesulfonate. The film exhibited an average SE of 26.3 dB in the X band and a specific SE of 1563.17 dB cm2 g-1 with a thickness of merely 0.2 mm. This film withstood a tensile stress of 16.0 MPa, while the breaking elongation ratio reached 538.0%. After 10,000 cyclic bending, 92.3% of the EMI shielding property was retained. In summary, this study highlights the most suitable dopant for EMI shielding applications and provides a prospective alternative for advanced, flexible, and smart devices.

6.
ACS Omega ; 5(38): 24693-24699, 2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-33015486

RESUMEN

The electrode, as one of the key components in supercapacitors, has a pivotal effect on the overall performances. In this work, a series of composite electrode materials are proposed via the combination of nickel aluminum layered double hydroxides (NiAl-LDHs) and carbon nanotubes (CNTs). To begin with, materials with different ratios of the two compositions are fabricated with a coprecipitation method. After that, various characterization methods indicate that the NiAl-LDH/CNT composites exhibit an irregular thin platelet structure with a well-constructed conductive network inside. Furthermore, the effect of the CNT ratio on the electrochemical property is subsequently investigated, which proves that the conductive network of CNTs is beneficial for the transport of the electrons and strengthens the platelet structure. The results show that when the amount of CNTs reaches 1.5 wt %, it can yield a high specific capacitance of 2447 F g-1 at 2 A g-1, with a good cycling stability of 90.1% after 2500 cycles, indicating high application potential in positive electrodes of pseudocapacitors. The synergistic effects of NiAl-LDHs and CNTs are thought to be the main reasons for the good properties of NiAl-LDHs/CNTs composites.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA