Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Environ Monit Assess ; 186(6): 3891-904, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24595699

RESUMEN

Interpretations of state and trends in lake water quality are generally based on measurements from one or more stations that are considered representative of the response of the lake ecosystem. The objective of this study is to examine how these interpretations may be influenced by station location in a large lake. We addressed this by analyzing trends in water quality variables collected monthly from eight monitoring stations along a transect from the central lake to the north in Lake Taihu (area about 2,338 km(2)), China, from October 1991 to December 2011. The parameters examined included chlorophyll a (Chl a), total nitrogen (TN), and total phosphorus (TP) concentrations, and Secchi disk depth (SD). The individual variables were increasingly poorly correlated among stations along the transect from the central lake to the north, particularly for Chl a and TP. The timing of peaks in individual variables was also dependent on station location, with spectral analysis revealing a peak at annual frequency for the central lake station but absence of, or much reduced signal, at this frequency for the near-shore northern station. Percentage annual change values for each of the four variables also varied with station and indicated general improvement in water quality at northern stations, particularly for TN, but little change or decline at central lake stations. Sediment resuspension and tributary nutrient loads were considered to be responsible for some of the variability among stations. Our results indicate that temporal trends in water quality may be station specific in large lakes and that calculated whole-lake trophic status trends or responses to management actions may be specific to the station(s) selected for monitoring and analysis. These results have important implications for efficient design of monitoring programs that are intended to integrate the natural spatial variability of large lakes.


Asunto(s)
Monitoreo del Ambiente , Lagos/química , Contaminantes Químicos del Agua/análisis , China , Clorofila/análisis , Clorofila A , Nitrógeno/análisis , Fósforo/análisis , Análisis Espacio-Temporal , Contaminación Química del Agua/estadística & datos numéricos
2.
Artículo en Inglés | MEDLINE | ID: mdl-36900988

RESUMEN

Blue-green infrastructure provides a variety of ecosystem services and is becoming an increasingly vital part of urban ecosystem protection. It is an ecological facility for ecological conservation and environmental protection, and a foundation for realizing people's needs for a better life. This study selects indicators from four dimensions: social, economic, environmental, and ecological, and the demand for blue-green infrastructure is assessed comprehensively. The results show that: (1) the demand for blue-green infrastructure varies spatially with the development of the city; (2) the total demand for blue-green infrastructure in Nanjing from 2000 to 2020 shows a pattern of "high in the center and low in the periphery"; (3) the level of economic development, urban spatial pattern, and decision management orientation have different degrees of influence on the demand for blue-green infrastructure, with the urban spatial pattern having the greatest impact. Therefore, in the future, blue-green infrastructure should be optimized by taking into account the spatial characteristics of demand in Nanjing.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Humanos , Ciudades , Factores Socioeconómicos , Desarrollo Económico , China
3.
Artículo en Inglés | MEDLINE | ID: mdl-36981948

RESUMEN

To quantitatively evaluate the effects on water quality improvement caused by reducing external loadings entering Lake Erhai through inflow rivers, a one-dimensional hydrodynamic and ecological model (DYRESM-CAEDYM) was set up to simulate the water quality and water level variations. The calibrated and validated model was used to conduct six scenarios for evaluating the water quality responses to different amounts of external loading reduction at Lake Erhai. The results show (1) the total nitrogen (TN) concentration of Lake Erhai will be higher than 0.5 mg/L without any watershed pollution control during April-November 2025, which cannot meet Grade II standard of the China Surface Water Environmental Quality Standards (GB3838-2002). (2) External loading reductions can significantly reduce the concentrations of nutrients and Chla at Lake Erhai. The effects of water quality improvement will be proportional to the reduction rate of external loading reductions. (3) Internal release might be an important source of pollution It needs to be seriously considered as well as external loading for mitigating the eutrophication at Lake Erhai in the future.


Asunto(s)
Contaminantes Químicos del Agua , Calidad del Agua , Lagos , Mejoramiento de la Calidad , Nitrógeno/análisis , Fósforo/análisis , China , Eutrofización , Monitoreo del Ambiente/métodos , Contaminantes Químicos del Agua/análisis
4.
J Environ Sci (China) ; 21(3): 319-27, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19634443

RESUMEN

Based on a 2-D hydrodynamic model, a vertically integrated eutrophication model was developed. The physical sub-model can be used for calculation of water density at different depths, and the water quality sub-model was used for calculation of algal growth. The cohesive and non-cohesive sediments were simulated separately with different methods. The light extinction coefficient used in the underwater light regime sub-model was linearly related to the sum of sediment and phytoplankton biomass. Some components less important to the model were simplified to improve practicability and calculation efficiency. Using field data from Fuchunjiang Reservoir, we calculated the sensitivity of ecological parameters included in this model and validated the model. The results of sensitivity analysis showed that the parameters strongly influenced the phytoplankton biomass, including phytoplankton maximum growth rate, respiration rate, non-predatory mortality rate, settling rate, zooplankton maximum filtration rate, specific extinction coefficient for suspended solids and sediment oxygen demand rate. The model was calibrated by adjusting these parameters. Total chlorophyll a (chl-a) concentrations at different layers in the water column were reproduced very well by the model simulations. The simulated chl-a values were positively correlated to the measured values with Pearson correlation coefficient of 0.92. The mean difference between measured and simulated chl-a concentrations was 12% of the measured chl-a concentration. Measured and simulated DO concentrations were also positively correlated (r = 0.74) and the mean difference was 4% of measured DO concentrations. The successful validation of model indicated that it would be very useful in water quality management and algal bloom prediction in Fuchunjiang Reservoir and a good tool for water quality regulation of other river-style reservoirs.


Asunto(s)
Eutrofización , Agua Dulce , Modelos Biológicos , Ríos , Abastecimiento de Agua , Animales , China , Clorofila/análisis , Clorofila A , Monitoreo del Ambiente , Sensibilidad y Especificidad
5.
Environ Sci Pollut Res Int ; 26(16): 16519-16528, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30982185

RESUMEN

Intermittent turbulent bursts have great impacts on sediment resuspension in coastal regions, tidal estuaries, and lakes. In this study, the role of turbulence structure on sediment resuspension was examined at Meiliang Bay of Lake Taihu, the third largest freshwater lake in China. The instantaneous three-dimensional velocity and suspended sediment concentrations were synchronously recorded by Acoustic Doppler Velocimetry (ADV) and Optical Backscatter Sensor (OBS) placed close to the lakebed. Statistical and quadrant analyses results revealed that the coherent structure contributed significantly to sediment particle entrainment. The intermittent burst events (dominant ejection and sweep) were the main energy source for sediment resuspension processes. 99.2% of turbulent sediment fluxes were triggered by ejection and sweep events, whereas the contributions coming from the outward interactions and inward interactions were relatively small. The large-amplitude burst events in the coherent structure dominated the influence on the sediment diffusion. Additionally, it was found that instantaneous sediment particle entrainment occurred earlier than the mean critical shear stress, which was induced by the stochastic nature of turbulence. The amount of sediment flux considering the turbulence characteristics was one or two larger magnitudes than the flux amount assessed by the time-averaged flow field, which indicated the critical shear stress approach might underestimate the sediment resuspension. Therefore, the influence of turbulence performance on sediment entrainment shall be seriously considered when evaluating sediment flux and internal nutrient loads in Lake Taihu.


Asunto(s)
Monitoreo del Ambiente/métodos , Sedimentos Geológicos/química , Lagos/análisis , Nitrógeno/análisis , Fósforo/análisis , China , Monitoreo del Ambiente/instrumentación , Sedimentos Geológicos/análisis , Lagos/química , Estrés Mecánico , Viento
6.
Environ Sci Pollut Res Int ; 25(15): 14499-14510, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29525871

RESUMEN

The identification of coherent structures is very important in investigating the sediment transport mechanism and controlling the eutrophication in shallow lakes. This study analyzed the turbulence characteristics and the sensitivity of quadrant analysis to threshold level. Simultaneous in situ measurements of velocities and suspended sediment concentration (SSC) were conducted in Lake Taihu with acoustic Doppler velocimeter (ADV) and optical backscatter sensor (OBS) instruments. The results show that the increase in hole size makes the difference between dominant and non-dominant events more distinct. Wind velocity determines the frequency of occurrence of sweep and ejection events, which provide dominant contributions to the Reynolds stress. The increase of wind velocity enlarges the magnitude of coherent events but has little impact on the events frequency with the same hole size. The events occurring within short periods provide large contributions to the momentum flux. Transportation and diffusion of sediment are in control of the intermittent coherent events to a large extent.


Asunto(s)
Lagos/química , Acústica , Eutrofización , Lagos/análisis , Viento
7.
Environ Sci Pollut Res Int ; 24(4): 4029-4039, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27924433

RESUMEN

The disturbance of the water-sediment interface by wind-driven currents and waves plays a critical role in sediment resuspension and internal nutrient release in large, shallow lakes. This study analyzed the effects of the interactions between wind-induced currents an1d waves on the driving mechanism of sediment resuspension in Lake Taihu, the third largest freshwater lake in China, using acoustic and optic techniques to collect long-term, high-frequency, synchronous in situ measurements of wind, currents, waves, and suspended solid concentrations (SSCs). The results suggested that water turbidity started to increase at wind speeds of approximately 4 m/s and significantly increased when wind speeds exceeded 6 m/s. In most cases, wind-induced waves were the main energy source for changes in turbidity. Wave-generated shear stress contributed more than 95% to sediment resuspension and that only in weak wind conditions (<4 m/s) did the lake bottom shear stresses generated by currents and waves contributed equally. The relationship between SSC and bottom shear stress generated by wave was established by fitting the observed results. The processes of sediment dynamics were divided into four stages (A through D) according to three shear-stress thresholds. In stage A, SSC remained stable (about 45 mg/L) and τw was less than 0.02 N/m2. In stage B, the sediment bed was starting to be activated (SSC 45∼60 mg/L) and τw was in the range of 0.02∼0.07 N/m2. In stage C, a medium amount of sediment was suspended (SSC 60∼150 mg/L) and τw ranged from 0.07 to 0.3 N/m2. In stage D, large amount of sediment was suspended (SSC 150∼300 mg/L) and τw was larger than 0.3 N/m2. The findings of this paper reveal the driving mechanism of sediment resuspension, which may further help to evaluate internal nutrient release in large shallow Lake Taihu.


Asunto(s)
Sedimentos Geológicos/análisis , Lagos , China , Viento
8.
Environ Sci Pollut Res Int ; 24(3): 2675-2684, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27832435

RESUMEN

Sediment resuspension plays an important role to provide nutrient release for algal growth in large shallow lakes. The settling velocity (w s ) is the key parameter for understanding the suspended sediment transport. In this paper, acoustic Doppler velocimeter (ADV) and optical backscatter sensor (OBS) instruments were used to measure in situ velocities and suspended sediment concentration (SSC) simultaneously without affecting the ambient turbulence in the bottom layer of Lake Taihu. The results showed that (1) ADV echo intensity (EI) could be transferred into SSC successfully by using a simple logarithmic relationship with a strong correlation of 0.87. (2) Three methods from a balance of settling and diffusive flux gradients for calculating settling velocities were applied, including Reynolds concentration flux, estimation of eddy diffusivity using the von-Karman Prandtl equation, and Kwon's power equation. The average settling velocity during the observation period was 0.11 mm/s for Lake Taihu. (3) The fitted power function, w s = 1.85 × 10-3 C 1.04, could be used to estimate w s according to SSC. (4) Settling velocity changes with SSC, vertical velocities, and wind speed, which describes suspended sediment instantaneous and continuous motions. This paper provides an effective approach for estimating the settling velocity, provides a reference value of settling velocity for hydrodynamic model, and supports a better understanding of sediment transport process and nutrient release in large shallow lakes.


Asunto(s)
Acústica , Monitoreo del Ambiente/métodos , Sedimentos Geológicos , Hidrodinámica , Lagos , Modelos Teóricos , Viento
9.
J Environ Sci (China) ; 16(6): 908-11, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15900718

RESUMEN

Investigation was made into sediment depth at 723 irregularly scattered measurement points which cover all the regions in Taihu Lake, China. The combination of successive correction scheme and geostatistical method was used to get all the values of recent sediment thickness at the 69 x 69 grids in the whole lake. The results showed that there is the significant difference in sediment depth between the eastern area and the western region, and most of the sediments are located in the western shore-line and northern regimes but just a little in the center and eastern parts. The notable exception is the patch between the center and Xishan Island where the maximum sediment depth is more than 4.0 m. This sediment distribution pattern is more than likely related to the current circulation pattern induced by the prevailing wind-forcing in Taihu Lake. The numerical simulation of hydrodynamics can strong support the conclusion. Sediment effects on water quality was also studied and the results showed that the concentrations of TP, TN and SS in the western part are obviously larger than those in the eastern regime, which suggested that more nutrients can be released from thicker sediment areas.


Asunto(s)
Sedimentos Geológicos , Modelos Teóricos , Movimientos del Agua , China , Monitoreo del Ambiente , Abastecimiento de Agua
10.
Environ Sci Pollut Res Int ; 20(12): 8546-56, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23677755

RESUMEN

Short-term hydrodynamic fluctuations caused by extreme weather events are expected to increase worldwide because of global climate change, and such fluctuations can strongly influence cyanobacterial blooms. In this study, the cyanobacterial bloom disappearance and reappearance in Lake Taihu, China, in response to short-term hydrodynamic fluctuations, was investigated by field sampling, long-term ecological records, high-frequency sensors and MODIS satellite images. The horizontal drift caused by the dominant easterly wind during the phytoplankton growth season was mainly responsible for cyanobacterial biomass accumulation in the western and northern regions of the lake and subsequent bloom formation over relatively long time scales. The cyanobacterial bloom changed slowly under calm or gentle wind conditions. In contrast, the short-term bloom events within a day were mainly caused by entrainment and disentrainment of cyanobacterial colonies by wind-induced hydrodynamics. Observation of a westerly event in Lake Taihu revealed that when the 30 min mean wind speed (flow speed) exceeded the threshold value of 6 m/s (5.7 cm/s), cyanobacteria in colonies were entrained by the wind-induced hydrodynamics. Subsequently, the vertical migration of cyanobacterial colonies was controlled by hydrodynamics, resulting in thorough mixing of algal biomass throughout the water depth and the eventual disappearance of surface blooms. Moreover, the intense mixing can also increase the chance for forming larger and more cyanobacterial colonies, namely, aggregation. Subsequently, when the hydrodynamics became weak, the cyanobacterial colonies continuously float upward without effective buoyancy regulation, and cause cyanobacterial bloom explosive expansion after the westerly. Furthermore, the results of this study indicate that the strong wind happening frequently during April and October can be an important cause of the formation and expansion of cyanobacterial blooms in Lake Taihu.


Asunto(s)
Cianobacterias/crecimiento & desarrollo , Eutrofización , Lagos/microbiología , Fitoplancton/crecimiento & desarrollo , Viento , Biomasa , China , Cambio Climático , Monitoreo del Ambiente , Hidrodinámica , Lagos/química , Estaciones del Año
11.
Water Res ; 46(8): 2591-604, 2012 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-22391017

RESUMEN

Thermal regime is strongly associated with hydrodynamics in water, and it plays an important role in the dynamics of water quality and ecosystem succession of stratified reservoirs. Changes in both climate and hydrological conditions can modify thermal regimes. Liuxihe Reservoir (23°45'50″N; 113°46'52″E) is a large, stratified and deep reservoir in Guangdong Province, located at the Tropic of Cancer of southern China. The reservoir is a warm monomictic water body with a long period of summer stratification and a short period of mixing in winter. The vertical distribution of suspended particulate material and nutrients are influenced strongly by the thermal structure and the associated flow fields. The hypolimnion becomes anoxic in the stratified period, increasing the release of nutrients from the bottom sediments. Fifty-one years of climate and reservoir operational observations are used here to show the marked changes in local climate and reservoir operational schemes. The data show increasing air temperature and more violent oscillations in inflow volumes in the last decade, while the inter-annual water level fluctuations tend to be more moderate. To quantify the effects of changes in climate and hydrological conditions on thermal structure, we used a numerical simulation model to create scenarios incorporating different air temperatures, inflow volumes, and water levels. The simulations indicate that water column stability, the duration of the mixing period, and surface and outflow temperatures are influenced by both natural factors and by anthropogenic factors such as climate change and reservoir operation schemes. Under continuous warming and more stable storage in recent years, the simulations indicate greater water column stability and increased duration of stratification, while irregular large discharge events may reduce stability and lead to early mixing in autumn. Our results strongly suggest that more attention should be focused on water quality in years of extreme climate variation and hydrological conditions, and selective withdrawal of deep water may provide an efficient means to reduce internal loading in warm years.


Asunto(s)
Clima , Geografía , Temperatura , Ciclo Hidrológico , Aire , China , Simulación por Computador , Hidrodinámica , Modelos Teóricos , Nefelometría y Turbidimetría , Nitrógeno/análisis , Fósforo/análisis , Reproducibilidad de los Resultados , Estaciones del Año , Factores de Tiempo , Abastecimiento de Agua
12.
Huan Jing Ke Xue ; 29(6): 1457-62, 2008 Jun.
Artículo en Zh | MEDLINE | ID: mdl-18763484

RESUMEN

Spatial variation of chemical oxygen demand (COD) concentration was documented and significant correlations between COD concentration and chromophoric dissolved organic matter (CDOM) absorption, fluorescence, DOC concentration were found based on a cruise sampling in the northern region of Lake Taihu in summer including 42 samplings. The possible source of COD was also discussed using every two cruise samplings in summer and winter, respectively. The COD concentration ranged from 3.77 to 7.96 mg x L(-1) with a mean value of (5.90 +/- 1.54) mg x L(-1). The mean COD concentrations in Meiliang Bay and the central lake basin were (6.93 +/- 0.89) mg x L(-1) and (4.21 +/- 0.49) mg x L(-1) respectively. A significant spatial difference was found between Meiliang Bay and the central lake basin in COD concentration, CDOM absorption coefficient, fluorescence, DOC and phytoplankton pigment concentrations, decreasing from the river mouth to inner bay, outer bay and the central lake basin. Significant correlations between COD concentration and CDOM absorption, fluorescence, DOC concentration, suggested that COD concentration could be estimated and organic pollution could be assessed using CDOM absorption retrieved from remote sensing images. Significant and positive correlation was found between COD concentration and chlorophyll a concentration in summer. However, the correlation was weak or no correlation was found in winter. Furthermore, a significant higher COD concentration was found in summer than in winter (p < 0.001). Our results indicated that degradation of phytoplankton blooms was the main source of COD in summer, except for river terrestrial input.


Asunto(s)
Carbono/análisis , Compuestos Orgánicos/análisis , Contaminantes Químicos del Agua/análisis , China , Clorofila/análisis , Clorofila A , Agua Dulce/análisis , Agua Dulce/química , Geografía
13.
Ying Yong Sheng Tai Xue Bao ; 16(6): 1133-7, 2005 Jun.
Artículo en Zh | MEDLINE | ID: mdl-16180769

RESUMEN

Based on the successive underwater irradiance measurement in situ from Jul. 12 to 17 in 2003, the attenuation of photosynthetically available radiation (PAR) and euphotic depth in Meiliang Bay were analyzed under different winds and waves. The results showed that the downward PAR attenuation coefficients ranged from 2.63 to 4.7 m(-1), with an average of 3.63 +/- 0.47 x m(-1), and the corresponding euphotic depth ranged from 0.98 to 1.75 m, with an average of 1.29 +/- 0.18 m, which demonstrated that phytoplankton and macrophyte could not grow below 1.5 m due to the lack of adequate solar radiation. The total suspended solids resulted from wind and wave increased the attenuation of light, with the downward attenuation coefficients of PAR being 2.63, 3.72 and 4.37 x m(-1) under small, medium and large wind and wave, respectively. Significant linear correlations were found between transparence, PAR attenuation coefficient, euphotic depth and total suspended solid, especially inorganic suspended solid, while chlorophyll a was the most nonsignificant light attenuator. Multiple stepwise linear regressions showed that inorganic suspended solid was the most important light attenuator dominating the light attenuation in wind-exposed Meiliang Bay.


Asunto(s)
Agua Dulce , Fotosíntesis , Fitoplancton/metabolismo , Fitoplancton/efectos de la radiación , Rayos Ultravioleta , Radiometría , Luz Solar , Viento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA