Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell Rep Med ; 4(3): 100976, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36921598

RESUMEN

Restrictive cardiomyopathy (RCM) is defined as increased myocardial stiffness and impaired diastolic relaxation leading to elevated ventricular filling pressures. Human variants in filamin C (FLNC) are linked to a variety of cardiomyopathies, and in this study, we investigate an in-frame deletion (c.7416_7418delGAA, p.Glu2472_Asn2473delinAsp) in a patient with RCM. Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) with this variant display impaired relaxation and reduced calcium kinetics in 2D culture when compared with a CRISPR-Cas9-corrected isogenic control line. Similarly, mutant engineered cardiac tissues (ECTs) demonstrate increased passive tension and impaired relaxation velocity compared with isogenic controls. High-throughput small-molecule screening identifies phosphodiesterase 3 (PDE3) inhibition by trequinsin as a potential therapy to improve cardiomyocyte relaxation in this genotype. Together, these data demonstrate an engineered cardiac tissue model of RCM and establish the translational potential of this precision medicine approach to identify therapeutics targeting myocardial relaxation.


Asunto(s)
Cardiomiopatía Restrictiva , Humanos , Cardiomiopatía Restrictiva/genética , Ingeniería de Tejidos , Miocitos Cardíacos , Miocardio , Descubrimiento de Drogas
2.
Adv Healthc Mater ; 11(5): e2101557, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34706168

RESUMEN

Extracellular vesicles (EVs) are carriers of biological signals through export and delivery of RNAs and proteins. Of increasing interest is the use of EVs as a platform for delivery of biomolecules. Preclinical studies have effectively used EVs to treat a number of diseases. Uniquely, endogenous machinery within cells can be manipulated in order to produce desirable loading of cargo within secreted EVs. In order to inform the development of such approaches, an understanding of the cellular mechanisms by which cargo is sorted to EVs is required. Here, the current knowledge of cargo sorting within EVs is reviewed. Here is given an overview of recent bioengineering approaches that leverage these advances. Methods of externally manipulating EV cargo are also discussed. Finally, a perspective on the current challenges of EVs as a drug delivery platform is offered. It is proposed that standardized bioengineering methods for therapeutic EV preparation will be required to create a well-defined clinical product.


Asunto(s)
Vesículas Extracelulares , ARN , Bioingeniería/métodos , Transporte Biológico , Sistemas de Liberación de Medicamentos/métodos , Vesículas Extracelulares/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA