RESUMEN
Spin-based logic architectures provide nonvolatile data retention, near-zero leakage, and scalability, extending the technology roadmap beyond complementary metal-oxide-semiconductor logic1-13. Architectures based on magnetic domain walls take advantage of the fast motion, high density, non-volatility and flexible design of domain walls to process and store information1,3,14-16. Such schemes, however, rely on domain-wall manipulation and clocking using an external magnetic field, which limits their implementation in dense, large-scale chips. Here we demonstrate a method for performing all-electric logic operations and cascading using domain-wall racetracks. We exploit the chiral coupling between neighbouring magnetic domains induced by the interfacial Dzyaloshinskii-Moriya interaction17-20, which promotes non-collinear spin alignment, to realize a domain-wall inverter, the essential basic building block in all implementations of Boolean logic. We then fabricate reconfigurable NAND and NOR logic gates, and perform operations with current-induced domain-wall motion. Finally, we cascade several NAND gates to build XOR and full adder gates, demonstrating electrical control of magnetic data and device interconnection in logic circuits. Our work provides a viable platform for scalable all-electric magnetic logic, paving the way for memory-in-logic applications.
RESUMEN
An Amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMEN
Shape-morphing systems, which can perform complex tasks through morphological transformations, are of great interest for future applications in minimally invasive medicine1,2, soft robotics3-6, active metamaterials7 and smart surfaces8. With current fabrication methods, shape-morphing configurations have been embedded into structural design by, for example, spatial distribution of heterogeneous materials9-14, which cannot be altered once fabricated. The systems are therefore restricted to a single type of transformation that is predetermined by their geometry. Here we develop a strategy to encode multiple shape-morphing instructions into a micromachine by programming the magnetic configurations of arrays of single-domain nanomagnets on connected panels. This programming is achieved by applying a specific sequence of magnetic fields to nanomagnets with suitably tailored switching fields, and results in specific shape transformations of the customized micromachines under an applied magnetic field. Using this concept, we have built an assembly of modular units that can be programmed to morph into letters of the alphabet, and we have constructed a microscale 'bird' capable of complex behaviours, including 'flapping', 'hovering', 'turning' and 'side-slipping'. This establishes a route for the creation of future intelligent microsystems that are reconfigurable and reprogrammable in situ, and that can therefore adapt to complex situations.
RESUMEN
Floating gate memory (FGM), composed of van der Waals (vdW) junctions with an atomically thin floating layer for charge storage, is widely employed to develop logic-in memories and in-sensor computing devices. Most research efforts of FGM are spent on achieving long-term charge storage and fast reading/writing for flash and random-access memory. However, dynamic modulation of memory time via a tunneling barrier and vdW interfaces, which is critical for synaptic computing and machine vision, is still lacking. Here, a van der Waals short-term memory with tunable memory windows and retention times from milliseconds to thousands of seconds is reported, which is approximately exponentially proportional to the thickness h-BN (hexagonal boron nitride) barrier. The specific h-BN barrier with fruitful gap states provides charge release channels for trapped charges, making the vdW device switchable between positive photoconductance and negative photoconductance with a broadband light from IR to UV range. The dynamic short-term memory with tunable photo response highlights the design strategy of novel vdW memory vis interface engineering for further intelligent information storage and optoelectronic detection.
RESUMEN
Memory and logic devices that encode information in magnetic domains rely on the controlled injection of domain walls to reach their full potential. In this work, we exploit the chiral coupling, which is induced by the Dzyaloshinskii-Moriya interaction, between in-plane and out-of-plane magnetized regions of a Pt/Co/AlOx trilayer in combination with current-driven spin-orbit torques to control the injection of domain walls into magnetic conduits. We demonstrate that the current-induced domain nucleation is strongly inhibited for magnetic configurations stabilized by the chiral coupling and promoted for those that have the opposite chirality. These configurations allow for efficient domain wall injection using current densities of the order of 4 × 1011 A m-2, which are lower than those used in other injection schemes. Furthermore, by setting the orientation of the in-plane magnetization using an external field, we demonstrate the use of a chiral domain wall injector to create a controlled sequence of alternating domains in a racetrack structure driven by a steady stream of unipolar current pulses.
RESUMEN
Two-dimensional arrays of magnetically coupled nanomagnets provide a mesoscopic platform for exploring collective phenomena as well as realizing a broad range of spintronic devices. In particular, the magnetic coupling plays a critical role in determining the nature of the cooperative behavior and providing new functionalities in nanomagnet-based devices. Here, we create coupled Ising-like nanomagnets in which the coupling between adjacent nanomagnetic regions can be reversibly converted between parallel and antiparallel through solid-state ionic gating. This is achieved with the voltage-control of the magnetic anisotropy in a nanosized region where the symmetric exchange interaction favors parallel alignment and the antisymmetric exchange interaction, namely the Dzyaloshinskii-Moriya interaction, favors antiparallel alignment of the nanomagnet magnetizations. Applying this concept to a two-dimensional lattice, we demonstrate a voltage-controlled phase transition in artificial spin ices. Furthermore, we achieve an addressable control of the individual couplings and realize an electrically programmable Ising network, which opens up new avenues to design nanomagnet-based logic devices and neuromorphic computers.
RESUMEN
The discovery of magnetism in van der Waals (vdW) materials has established unique building blocks for the research of emergent spintronic phenomena. In particular, owing to their intrinsically clean surface without dangling bonds, the vdW magnets hold the potential to construct a superior interface that allows for efficient electrical manipulation of magnetism. Despite several attempts in this direction, it usually requires a cryogenic condition and the assistance of external magnetic fields, which is detrimental to the real application. Here, we fabricate heterostructures based on Fe3GaTe2 flakes that have room-temperature ferromagnetism with excellent perpendicular magnetic anisotropy. The current-driven nonreciprocal modulation of coercive fields reveals a high spin-torque efficiency in the Fe3GaTe2/Pt heterostructures, which further leads to a full magnetization switching by current. Moreover, we demonstrate the field-free magnetization switching resulting from out-of-plane polarized spin currents by asymmetric geometry design. Our work could expedite the development of efficient vdW spintronic logic, memory, and neuromorphic computing devices.
RESUMEN
Very recently, ferroelectric polarization in staggered bilayer hexagonal boron nitride (BBN) and its novel sliding inversion mechanism were reported experimentally (Science2021, 372, 1458; 2021, 372, 1462), which paved a new way to realizing van der Waals (vdW) ferroelectric devices with new functionalities. Here, we develop vdW sliding ferroelectric tunnel junctions (FTJs) using the sliding ferroelectric BBN unit as an ultrathin barrier and explore their transport properties with different ferroelectric states and metal contacts via first principles. It is found that the electrode/BBN contact electric field quenches the ferroelectricity in the staggered BBN, resulting in a very small tunnelling electroresistance (TER). Inserting high-mobility 2D materials between Au and BN can restore the BBN ferroelectricity, reaching a giant TER of â¼10 000% in sliding FTJs. We finally investigate the metal-contact and thickness effect on the tunnelling property of sliding FTJs. The giant TER and multiple non-volatile resistance states in vdW sliding FTJs show promising applications in voltage-controlled nano-memories with ultrahigh storage density.
RESUMEN
Ice nucleation is one of the most uncertain microphysical processes, as it occurs in various ways and on many types of particles. To overcome this challenge, we present a heterogeneous ice nucleation study on deposition ice nucleation and immersion freezing in a novel cryogenic X-ray experiment with the capability to spectroscopically probe individual ice nucleating and non-ice nucleating particles. Mineral dust type particles composed of either ferrihydrite or feldspar were used and mixed with organic matter of either citric acid or xanthan gum. We observed in situ ice nucleation using scanning transmission X-ray microscopy (STXM) and identified unique organic carbon functionalities and iron oxidation state using near-edge X-ray absorption fine structure (NEXAFS) spectroscopy in the new in situ environmental ice cell, termed the ice nucleation X-ray cell (INXCell). Deposition ice nucleation of ferrihydrite occurred at a relative humidity with respect to ice, RH i, between â¼120-138% and temperatures, T â¼ 232 K. However, we also observed water uptake on ferrihydrite at the same T when deposition ice nucleation did not occur. Although, immersion freezing of ferrihydrite both in pure water droplets and in aqueous citric acid occurred at or slightly below conditions for homogeneous freezing, i.e. the effect of ferrihydrite particles acting as a heterogeneous ice nucleus for immersion freezing was small. Microcline K-rich feldspar mixed with xanthan gum was also used in INXCell experiments. Deposition ice nucleation occurred at conditions when xanthan gum was expected to be highly viscous (glassy). At less viscous conditions, immersion freezing was observed. We extended a model for heterogeneous and homogeneous ice nucleation, named the stochastic freezing model (SFM). It was used to quantify heterogeneous ice nucleation rate coefficients, mimic the competition between homogeneous ice nucleation; water uptake; deposition ice nucleation and immersion freezing, and predict the T and RH i at which ice was observed. The importance of ferrihydrite to act as a heterogeneous ice nucleating particle in the atmosphere using the SFM is discussed.
RESUMEN
Natural superlattice structures MnBi2Te4(Bi2Te3)n (n = 1, 2, ...), in which magnetic MnBi2Te4 layers are separated by nonmagnetic Bi2Te3 layers, hold band topology, magnetism and reduced interlayer coupling, providing a promising platform for the realization of exotic topological quantum states. However, their magnetism in the two-dimensional limit, which is crucial for further exploration of quantum phenomena, remains elusive. Here, complex ferromagnetic-antiferromagnetic coexisting ground states that persist down to the 2-septuple layers limit are observed and comprehensively investigated in MnBi4Te7 (n = 1) and MnBi6Te10 (n = 2). The ubiquitous Mn-Bi site mixing modifies or even changes the sign of the subtle interlayer magnetic interactions, yielding a spatially inhomogeneous interlayer coupling. Further, a tunable exchange bias effect, arising from the coupling between the ferromagnetic and antiferromagnetic components in the ground state, is observed in MnBi2Te4(Bi2Te3)n (n = 1, 2), which provides design principles and material platforms for future spintronic devices. Our work highlights a new approach toward the fine-tuning of magnetism and paves the way for further study of quantum phenomena in MnBi2Te4(Bi2Te3)n (n = 1, 2) as well as their magnetic applications.
Asunto(s)
Imanes , SesgoRESUMEN
Magnetically coupled nanomagnets have multiple applications in nonvolatile memories, logic gates, and sensors. The most effective couplings have been found to occur between the magnetic layers in a vertical stack. We achieved strong coupling of laterally adjacent nanomagnets using the interfacial Dzyaloshinskii-Moriya interaction. This coupling is mediated by chiral domain walls between out-of-plane and in-plane magnetic regions and dominates the behavior of nanomagnets below a critical size. We used this concept to realize lateral exchange bias, field-free current-induced switching between multistate magnetic configurations as well as synthetic antiferromagnets, skyrmions, and artificial spin ices covering a broad range of length scales and topologies. Our work provides a platform to design arrays of correlated nanomagnets and to achieve all-electric control of planar logic gates and memory devices.
RESUMEN
In magnetic logic, four basic Boolean logic operations can be programmed by a magnetic bit at room temperature with a high output ratio (>103 %). In the same clock cycle, benefiting from the built-in spin Hall effect, logic results can be directly written into magnetic bits using an all-electric method.
RESUMEN
The anomalous Hall effect of a magnetic material is coupled to the nonlinear transport effect of a semiconductor material in a simple structure to achieve a large geometric magnetoresistance (MR) based on a diode-assisted mechanism. An extremely large MR (>10(4) %) at low magnetic fields (1 mT) is observed at room temperature. This MR device shows potential for use as a logic gate for the four basic Boolean logic operations.