Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Res ; 252(Pt 4): 119076, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38710430

RESUMEN

The large yield of anaerobic digestates and the suboptimal efficacy of nutrient slow-release severely limit its practical application. To address these issues, a new biochar based fertilizer (MAP@BRC) was developed using biogas residue biochar (BRC) to recover nitrogen and phosphorus from biogas slurry. The nutrient release patterns of MAP@BRC and mechanisms for enhancing soil fertility were studied, and it demonstrated excellent performance, with 59% total nitrogen and 50% total phosphorus nutrient release rates within 28 days. This was attributed to the coupling of the mechanism involving the dissolution of struvite skeletons and the release of biochar pores. Pot experiments showed that crop yield and water productivity were doubled in the MAP@BRC group compared with unfertilized planting. The application of MAP@BRC also improved soil nutrient levels, reduced soil acidification, increased microbial populations, and decreased soil heavy metal pollution risk. The key factors that contributed to the improvement in soil fertility by MAP@BRC were an increase in available nitrogen and the optimization of pH levels in the soil. Overall, MAP@BRC is a safe, slow-release fertilizer that exhibits biochar-fertilizer interactions and synergistic effects. This slow-release fertilizer was prepared by treating a phosphorus-rich biogas slurry with a nitrogen-rich biogas slurry, and it simultaneously addresses problems associated with livestock waste treatment and provides a promising strategy to promote zero-waste agriculture.


Asunto(s)
Biocombustibles , Carbón Orgánico , Fertilizantes , Nitrógeno , Fósforo , Suelo , Fertilizantes/análisis , Carbón Orgánico/química , Suelo/química , Fósforo/análisis , Nitrógeno/análisis , Biocombustibles/análisis , Agricultura/métodos
2.
J Environ Manage ; 364: 121461, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38889649

RESUMEN

Invasibility, or an ecosystem's susceptibility to invasion, plays a critical role in managing biological invasions but is challenging to quantify due to its dependence on specific ecosystem variables. This limitation restricts the practical application of this concept in the control of alien species. This study aims to simplify invasibility into measurable components and develop an applicable framework to predict early colonization of alien plants within the coastal mangrove ecosystem. We used the unchanneled path length (UPL), a widely applied hydrological connectivity-related indicator, to assess the accessibility of the mangrove. The enhanced vegetation index (EVI), positively correlated with above-ground biomass, was used to evaluate the potential competitive intensity. Firstly, building on existing studies, we developed a four-quadrant concept model integrating the effects of EVI and UPL on the early colonization of the alien species Sonneratia apetala. Our results revealed significant differences in EVI and UPL values between colonized and uncolonized areas, with colonized regions displaying markedly lower values (P < 0.001). Additionally, logistic regression showed a significant negative association between the probability of successful colonization by S. apetala and both indicators (P < 0.001). These results validate the effectiveness of our conceptual model. Furtherly, we identified four key niche opportunities for exotic species in mangrove: mudflats outside the mangrove forest, tidal creeks, canopy gaps, and unmanaged abandoned aquaculture ponds. Overall, this study provides important insight into the ecological processes of alien S. apetala colonization and practical information for management of coastal areas susceptible to invasion. Additionally, it presents a case study on the practical application of the concept of invasibility in the management of alien species.


Asunto(s)
Ecosistema , Especies Introducidas , Humedales , Biomasa , Rhizophoraceae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA