Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Magn Reson Med ; 91(3): 1254-1267, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37986237

RESUMEN

PURPOSE: We propose a comprehensive workflow to design and build fully customized dense receive arrays for MRI, providing prediction of SNR and g-factor. Combined with additive manufacturing, this method allows an efficient implementation for any arbitrary loop configuration. To demonstrate the methodology, an innovative two-layer, 32-channel receive array is proposed. METHODS: The design workflow is based on numerical simulations using a commercial 3D electromagnetic software associated with circuit model co-simulations to provide the most accurate results in an efficient time. A model to compute the noise covariance matrix from circuit model scattering parameters is proposed. A 32-channel receive array at 7 T is simulated and fabricated with a two-layer design made of non-geometrically decoupled loops. Decoupling between loops is achieved using home-built direct high-impedance preamplifiers. The loops are 3D-printed with a new additive manufacturing technique to speed up integration while preserving the detailed geometry as simulated. The SNR and parallel-imaging performances of the proposed design are compared with a commercial coil, and in vivo images are acquired. RESULTS: The comparison of SNR and g-factors showed a good agreement between simulations and measurements. Experimental values are comparable with the ones measured on the commercial coil. Preliminary in vivo images also ensured the absence of any unexpected artifacts. CONCLUSION: A new design and performance analysis workflow is proposed and tested with a non-conventional 32-channel prototype at 7 T. Additive manufacturing of dense arrays of loops for brain imaging at ultrahigh field is validated for clinical use.


Asunto(s)
Imagen por Resonancia Magnética , Neuroimagen , Fantasmas de Imagen , Diseño de Equipo , Relación Señal-Ruido , Imagen por Resonancia Magnética/métodos , Fenómenos Electromagnéticos , Encéfalo/diagnóstico por imagen
2.
Neuroimage ; 261: 119498, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35917918

RESUMEN

Increased static field inhomogeneities are a burden for human brain MRI at Ultra-High-Field. In particular they cause enhanced Echo-Planar image distortions and signal losses due to magnetic susceptibility gradients at air-tissue interfaces in the subject's head. In the past decade, Multi-Coil Arrays (MCA) have been proposed to shim the field in the brain better than the 2nd or 3rd order Spherical Harmonic (SH) coils usually offered by MRI manufacturers. Here we present a novel MCA, named SCOTCH, optimized for whole brain shimming. Based on a cylindrical structure, it features several layers of small coils whose shape, size and location are found from a principal component analysis of ideal stream functions computed from an internal 100-brain fieldmap database. From an Open-Access external database of 126 brains, our SCOTCH implementation is shown to be equivalent to a partial 7th-order SH system with unlimited power, outperforming all known existing MCA prototypes. This result is further confirmed by a low-cost  30-cm diameter SCOTCH prototype built with 48 coils on 3 layers, and tested on 7 volunteers at 7T with a parallel-transmit RF coil made to be inserted in SCOTCH. Echo-Planar images of the subject brains before and after SCOTCH shimming show large signal recoveries, especially in the prefrontal cortex.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Magnetismo , Ondas de Radio
3.
Magn Reson Med ; 78(3): 1217-1223, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-27670737

RESUMEN

PURPOSE: Specific absorption rate (SAR) calculations in parallel transmission are commonly performed by using electromagnetic simulations on generic models. In this study, we propose a probabilistic analysis to study the safety factor employed to account for SAR intersubject variability versus risk relationship in head imaging at 7T. METHODS: Thirty-three finite-element electromagnetic simulations were conducted to sample the four-dimensional parameter space consisting of the head length, head breadth, and shifts in Z and Y random variables. Based on the SAR matrices for each configuration, a multivariate second-order polynomial of the SAR versus the different parameters was reconstructed for different types of radiofrequency pulses. A Monte Carlo calculation was then performed to compute the probability of occurrence of a given SAR value. RESULTS: By testing a large number of radiofrequency excitation pulses, the SAR calculated for the average model amplified by a safety margin of 1.5 was found to return a probability of less than 1% to be exceeded across the adult Caucasian population given the investigated parameters. CONCLUSION: The proposed method to study SAR intersubject variability uses a reasonable number of electromagnetic simulations. Look-ahead SAR safety margins can be deduced based on risk/benefit ratio assessments. Magn Reson Med 78:1217-1223, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Simulación por Computador , Imagen por Resonancia Magnética/métodos , Modelos Estadísticos , Absorción Fisicoquímica , Femenino , Análisis de Elementos Finitos , Cabeza/diagnóstico por imagen , Humanos
4.
NMR Biomed ; 28(1): 101-7, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25388870

RESUMEN

An MR thermometry method is proposed for measuring in vivo small temperature changes engendered by external RF heat sources. The method relies on reproducible and stable respiration and therefore currently applies to ventilated animals whose breathing is carefully controlled. It first consists in characterizing the stability of the main magnetic field as well as the variations induced by breathing during a first monitoring stage. Second, RF heating is applied while the phase and thus temperature evolutions are continuously measured, the corrections due to breathing and field drift being made thanks to the data accumulated during the first period. The RF heat source is finally stopped and the temperature rise likewise is continuously monitored during a third and last stage to observe the animal cooling down and to validate the assumptions made for correcting for the main field variation and the physiological noise. Experiments were performed with a clinical 7 T scanner on an anesthetized baboon and with a dedicated RF heating setup. Analysis of the data reveals a precision around 0.1°C, which allows us to reliably measure sub-degree temperature rises in the muscle and in the brain of the animal.


Asunto(s)
Temperatura Corporal , Encéfalo/fisiología , Imagen por Resonancia Magnética/métodos , Ventilación Pulmonar , Termometría/métodos , Animales , Masculino , Papio , Fantasmas de Imagen
5.
J Chem Phys ; 143(9): 094201, 2015 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-26342362

RESUMEN

The theoretical shapes of nuclear spin-noise spectra in NMR are derived by considering a receiver circuit with finite preamplifier input impedance and a transmission line between the preamplifier and the probe. Using this model, it becomes possible to reproduce all observed experimental features: variation of the NMR resonance linewidth as a function of the transmission line phase, nuclear spin-noise signals appearing as a "bump" or as a "dip" superimposed on the average electronic noise level even for a spin system and probe at the same temperature, pure in-phase Lorentzian spin-noise signals exhibiting non-vanishing frequency shifts. Extensive comparisons to experimental measurements validate the model predictions, and define the conditions for obtaining pure in-phase Lorentzian-shape nuclear spin noise with a vanishing frequency shift, in other words, the conditions for simultaneously obtaining the spin-noise and frequency-shift tuning optima.

6.
Magn Reson Med ; 67(1): 175-82, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21678489

RESUMEN

Transmit arrays have been developed to compensate for radiofrequency inhomogeneities in high-field MRI using different excitation schemes. They can be classified into static or dynamic shimmings depending on the target: homogenizing the radiofrequency field directly or homogenizing the flip angle distribution using the Bloch equation. We have developed an intermediate solution to compare shimming performances between different transmit arrays. This solution, called generalized double-acquisition imaging, is easier to implement than most dynamic shimming methods and offers more degrees of freedom than static shimmings. It uses two acquisitions so that the second acquisition complements the excitation of the first one to obtain by superposition an image that minimizes radiofrequency artefacts. For validation, the method is demonstrated experimentally for a gradient echo sequence on a spherical homogeneous phantom and by simulation on a human head model.


Asunto(s)
Artefactos , Encéfalo/anatomía & histología , Aumento de la Imagen/instrumentación , Imagen por Resonancia Magnética/instrumentación , Magnetismo/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Humanos , Fantasmas de Imagen , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
7.
J Magn Reson Imaging ; 35(6): 1312-21, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22241685

RESUMEN

PURPOSE: To investigate, via numerical simulations, the compliance of the specific absorption rate (SAR) versus temperature guidelines for the human head in magnetic resonance imaging procedures utilizing parallel transmission at high field. MATERIALS AND METHODS: A combination of finite element and finite-difference time-domain methods was used to calculate the evolution of the temperature distribution in the human head for a large number of parallel transmission scenarios. The computations were performed on a new model containing 20 anatomical structures. RESULTS: Among all the radiofrequency field exposure schemes simulated, the recommended 39°C maximum local temperature was never exceeded when the local 10-g average SAR threshold was reached. On the other hand, the maximum temperature barely complied with its guideline when the global SAR reached 3.2 W/kg. The maximal temperature in the eye could very well rise by more than 1°C in both cases. CONCLUSION: Considering parallel transmission, the recommended values of local 10-g SAR may remain a relevant metric to ensure that the local temperature inside the human head never exceeds 39°C, although it can lead to rises larger than 1°C in the eye. Monitoring temperature instead of SAR can provide increased flexibility in pulse design for parallel transmission.


Asunto(s)
Temperatura Corporal/fisiología , Temperatura Corporal/efectos de la radiación , Cabeza/fisiología , Cabeza/efectos de la radiación , Imagen por Resonancia Magnética , Modelos Biológicos , Simulación por Computador , Relación Dosis-Respuesta en la Radiación , Humanos , Campos Magnéticos , Dosis de Radiación
8.
Magn Reson Imaging ; 90: 37-43, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35413425

RESUMEN

PURPOSE: The use of dielectric pads to redistribute the radiofrequency fields is currently a popular solution for 7 T MRI practical applications, especially in brain imaging. In this work, we tackle several downsides of the previous generation of dielectric pads. This new silicon carbide recipe makes them MR invisible and greatly extends the performance lifespan. METHOD: We produce a set of two 10x10x1cm3 dielectric pads based on silicon carbide (SiC) powder dispersed in 4-Fluoro 1, 3-dioxalan-2-one (FEC) and polyethylene Glycol (PEG). The stability of the complex permittivity and the invisibility of the pads are characterized experimentally. Numerical simulations are done to evaluate global and local SAR over the head in presence of the pads. B0, B1+ and standard imaging sequences are performed on healthy volunteers. RESULTS: SiC pads are compared to state-of-the-art perovskite based dielectric pads with similar dielectric properties (barium titanate). Numerical simulations confirm that head and local SAR are similar. MRI measurements confirm that the pads do not induce susceptibility artefacts and improve B1+ amplitude in the temporal lobe regions by 25% on average. CONCLUSION: We demonstrate the long-term performance and invisibility of these new pads in order to increase the contrast in the brain temporal lobes in a commercial 7 T MRI head coil.


Asunto(s)
Artefactos , Imagen por Resonancia Magnética , Encéfalo/diagnóstico por imagen , Compuestos Inorgánicos de Carbono , Humanos , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Ondas de Radio , Compuestos de Silicona
9.
J Magn Reson Imaging ; 32(5): 1209-16, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21031527

RESUMEN

PURPOSE: To reduce the local specific absorption rate (SAR) obtained with tailored pulses using parallel transmission while obtaining homogenous flip angle distributions. MATERIALS AND METHODS: Finite-element simulations on a human head model were performed to obtain the individual magnetic and electric field maps for each channel of a parallel transmit array. From those maps, SAR calculations were carried out for "spoke" pulses designed to homogenize the flip angle in an axial slice of a human brain at 7 T. Based on the assumption that the coil element nearest to the maximum local energy deposition is the dominant contributor to the corresponding hot spot, a set of channel-dependent Tikhonov parameters is optimized. Resulting SAR distributions are compared to the ones obtained when using standard pulse design approaches based on a single Tikhonov parameter. RESULTS: In both the small- and large-tip-angle domain, the simulations show local SAR reductions by over a factor of 2 (4) for a well-centered (off-centered) head model at the expense of roughly 1% increment in flip-angle spread over the slice. CONCLUSION: Significant SAR reductions can be obtained by optimizing channel-dependent Tikhonov parameters based on the relation between coil elements and SAR hot spot positions.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Absorción , Encéfalo , Simulación por Computador , Humanos , Fantasmas de Imagen
10.
Magn Reson Imaging ; 53: 156-163, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30055291

RESUMEN

PURPOSE: Quantifying multiple NMR properties of sodium could be of benefit to assess changes in cellular viability in biological tissues. A proof of concept of Quantitative Imaging using Configuration States (QuICS) based on a SSFP sequence with multiple contrasts was implemented to extract simultaneously 3D maps of applied flip angle (FA), total sodium concentration, T1, T2, and Apparent Diffusion Coefficient (ADC). METHODS: A 3D Cartesian Gradient Recalled Echo (GRE) sequence was used to acquire 11 non-balanced SSFP contrasts at a 6 × 6 × 6 mm3 isotropic resolution with carefully-chosen gradient spoiling area, RF amplitude and phase cycling, with TR/TE = 20/3.2 ms and 25 averages, leading to a total acquisition time of 1 h 18 min. A least-squares fit between the measured and the analytical complex signals was performed to extract quantitative maps from a mono-exponential model. Multiple sodium phantoms with different compositions were studied to validate the ability of the method to measure sodium NMR properties in various conditions. RESULTS: Flip angle maps were retrieved. Relaxation times, ADC and sodium concentrations were estimated with controlled precision below 15%, and were in accordance with measurements from established methods and literature. CONCLUSION: The results illustrate the ability to retrieve sodium NMR properties maps, which is a first step toward the estimation of FA, T1, T2, concentration and ADC of 23Na for clinical research. With further optimization of the acquired QuICS contrasts, scan time could be reduced to be suitable with in vivo applications.


Asunto(s)
Imagen de Difusión por Resonancia Magnética , Imagenología Tridimensional/métodos , Sodio/química , Artefactos , Supervivencia Celular , Humanos , Espectroscopía de Resonancia Magnética , Método de Montecarlo , Fantasmas de Imagen , Relación Señal-Ruido
11.
J Magn Reson ; 275: 11-18, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27951426

RESUMEN

Parallel transmission is a very promising method to tackle B1+ field inhomogeneities at ultrahigh field in magnetic resonant imaging (MRI). This technique is however limited by the mutual coupling between the radiating elements. Here we propose to solve this problem by designing a passive magneto-electric resonator that we here refer to as stacked magnetic resonator (SMR). By combining numerical and experimental methodologies, we prove that this novelty passive solution allows an efficient decoupling of elements of a phased-array coil. We demonstrate the ability of this technique to significantly reduce by more than 10dB the coupling preserving the quality of images compared to ideally isolated linear resonators on a spherical salty agar gel phantom in a 7T MRI scanner.

12.
J Magn Reson ; 261: 181-9, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26619073

RESUMEN

In Magnetic Resonance Imaging at ultra-high field, kT-points radiofrequency pulses combined with parallel transmission are a promising technique to mitigate the B1 field inhomogeneity in 3D imaging applications. The optimization of the corresponding k-space trajectory for its slice-selective counterpart, i.e. the spokes method, has been shown in various studies to be very valuable but also dependent on the hardware and specific absorption rate constraints. Due to the larger number of degrees of freedom than for spokes excitations, joint design techniques based on the fine discretization (gridding) of the parameter space become hardly tractable for kT-points pulses. In this article, we thus investigate the simultaneous optimization of the 3D blipped k-space trajectory and of the kT-points RF pulses, using a magnitude least squares cost-function, with explicit constraints and in the large flip angle regime. A second-order active-set algorithm is employed due to its demonstrated success and robustness in similar problems. An analysis of global optimality and of the structure of the returned trajectories is proposed. The improvement provided by the k-space trajectory optimization is validated experimentally by measuring the flip angle on a spherical water phantom at 7T and via Quantum Process Tomography.

13.
IEEE Trans Med Imaging ; 33(8): 1726-34, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24816550

RESUMEN

Transmit arrays have been developed to mitigate the RF field inhomogeneity commonly observed in high field magnetic resonance imaging (MRI), typically above 3T. To this end, the knowledge of the RF complex-valued B1 transmit-sensitivities of each independent radiating element has become essential. This paper details a method to speed up a currently available B1-calibration method. The principle relies on slice undersampling, slice and channel interleaving and kriging, an interpolation method developed in geostatistics and applicable in many domains. It has been demonstrated that, under certain conditions, kriging gives the best estimator of a field in a region of interest. The resulting accelerated sequence allows mapping a complete set of eight volumetric field maps of the human head in about 1 min. For validation, the accuracy of kriging is first evaluated against a well-known interpolation technique based on Fourier transform as well as to a B1-maps interpolation method presented in the literature. This analysis is carried out on simulated and decimated experimental B1 maps. Finally, the accelerated sequence is compared to the standard sequence on a phantom and a volunteer. The new sequence provides B1 maps three times faster with a loss of accuracy limited potentially to about 5%.


Asunto(s)
Mapeo Encefálico/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Algoritmos , Encéfalo/anatomía & histología , Encéfalo/fisiología , Humanos , Modelos Estadísticos , Fantasmas de Imagen , Reproducibilidad de los Resultados
14.
IEEE Trans Biomed Eng ; 60(11): 3167-75, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23799680

RESUMEN

A new setup for exposure of human cells in vitro at 37 °C to pulse-modulated 300 and 500 MHz signals of future magnetic resonance imaging (MRI) systems is designed, built up, and characterized. Two dipole antennas, specifically designed for ultrahigh field MRI, are used as radiating structures. The electromagnetic (EM) field distribution inside the incubator containing the cells is computed, and it is shown to be in a good agreement with measurements. The electric field at the cell level is quantified numerically. Local, 1-g average, and averaged over the culture medium volume SAR are provided along with the standard deviation values for each well. Temperature increments are measured inside the culture medium during the exposure using an optical fiber thermometer. Then, we identify the pulse parameters corresponding to the thermal threshold of 1 °C, usually considered as a threshold for thermally induced biological effects. For these parameters, the induction of heat shock proteins is assessed to biologically verify a potential thermal response of cells. The data demonstrate that, under the considered experimental conditions, exposure to pulse-modulated radiations emulating typical ultrahigh field MRI signals, corresponding to temperature increments below 1 °C, does not trigger any heat shock response in human brain cells.


Asunto(s)
Fenómenos Fisiológicos Celulares/efectos de la radiación , Campos Electromagnéticos , Modelos Biológicos , Ondas de Radio , Radiometría/instrumentación , Técnicas de Cultivo de Célula , Línea Celular Tumoral , Proteínas de Choque Térmico/análisis , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Radiometría/métodos , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA