Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Reproduction ; 168(2)2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38912971

RESUMEN

Valosin-containing protein (VCP; aka p97), a member of the AAA (ATPases Associated with various cellular Activities) family, has been associated with a wide range of cellular functions. While previous evidence has shown its presence in mammalian sperm, our study unveils its function in mouse sperm. Notably, we found that mouse VCP does not undergo tyrosine phosphorylation during capacitation and exhibits distinct localization patterns. In the sperm head, it resides within the equatorial segment and, following acrosomal exocytosis, it is released and cleaved. In the flagellum, VCP is observed in the principal and midpiece. Furthermore, our research highlights a unique role for VCP in the cAMP/PKA pathway during capacitation. Pharmacological inhibition of sperm VCP led to reduced intracellular cAMP levels that resulted in decreased phosphorylation in PKA substrates and tyrosine residues and diminished fertilization competence. Our results show that in mouse sperm, VCP plays a pivotal role in regulating cAMP production, probably by the modulation of soluble adenylyl cyclase activity.


Asunto(s)
AMP Cíclico , Capacitación Espermática , Espermatozoides , Proteína que Contiene Valosina , Animales , Masculino , Capacitación Espermática/efectos de los fármacos , Proteína que Contiene Valosina/metabolismo , Proteína que Contiene Valosina/genética , Espermatozoides/metabolismo , Ratones , AMP Cíclico/metabolismo , Fosforilación , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética
2.
J Biol Chem ; 298(6): 101988, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35487245

RESUMEN

The actin cytoskeleton reorganization during sperm capacitation is essential for the occurrence of acrosomal exocytosis (AR) in several mammalian species. Here, we demonstrate that in mouse sperm, within the first minutes of exposure upon capacitating conditions, the activity of RHOA/C and RAC1 is essential for LIMK1 and COFILIN phosphorylation. However, we observed that the signaling pathway involving RAC1 and PAK4 is the main player in controlling actin polymerization in the sperm head necessary for the occurrence of AR. Moreover, we show that the transient phosphorylation of COFILIN is also influenced by the Slingshot family of protein phosphatases (SSH1). The activity of SSH1 is regulated by the dual action of two pathways. On one hand, RHOA/C and RAC1 activity promotes SSH1 phosphorylation (inactivation). On the other hand, the activating dephosphorylation is driven by okadaic acid-sensitive phosphatases. This regulatory mechanism is independent of the commonly observed activating mechanisms involving PP2B and emerges as a new finely tuned modulation that is, so far, exclusively observed in mouse sperm. However, persistent phosphorylation of COFILIN by SSH1 inhibition or okadaic acid did not altered actin polymerization and the AR. Altogether, our results highlight the role of small GTPases in modulating actin dynamics required for AR.


Asunto(s)
Factores Despolimerizantes de la Actina , Capacitación Espermática , Factores Despolimerizantes de la Actina/metabolismo , Actinas/metabolismo , Animales , Cofilina 1/metabolismo , Exocitosis , Masculino , Mamíferos/metabolismo , Ratones , Ácido Ocadaico/metabolismo , Ácido Ocadaico/farmacología , Fosforilación , Semen/metabolismo
3.
Phys Chem Chem Phys ; 25(36): 24761-24769, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37671503

RESUMEN

Capacity retention is a critical property to enhance in electrochemical storage systems applied to renewable energy. In lithium-sulfur (Li-S) batteries, the capacity fade resulting from the shuttle effect of polysulfides is a major obstacle to their practical application. Sepiolite, an eco-friendly earth-abundant clay with suitable surface chemistry for anchoring and retaining various molecules and structures, was studied as a cathode additive to mitigate the shuttle effect using experimental and theoretical approaches. Electrochemical measurements, spectroscopy, and ab initio calculations were performed to describe the mechanism and interfaces involved in polysulfide retention using 2 wt% of sepiolite as an additive in Li-S batteries. The results showed that the addition of sepiolite significantly improved the capacity retention during battery cycling. Spectroscopic analysis revealed that the effective sepiolite-polysulfide interface was governed by oxidized sulfur species. Additionally, ab initio studies showed a highly exothermic adsorption both inside and outside the sepiolite pore. This study demonstrates the potential use of eco-friendly, low-cost, non-toxic, natural, and abundant materials as additives to increase capacity retention.

4.
FASEB J ; 35(6): e21478, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33991146

RESUMEN

Sperm capacitation is essential to gain fertilizing capacity. During this process, a series of biochemical and physiological modifications occur that allow sperm to undergo acrosomal exocytosis (AE). At the molecular level, hyperpolarization of the sperm membrane potential (Em) takes place during capacitation. This study shows that human sperm incubated under conditions that do not support capacitation (NC) can become ready for an agonist stimulated AE by pharmacologically inducing Em hyperpolarization with Valinomycin or Amiloride. To investigate how Em hyperpolarization promotes human sperm's ability to undergo AE, live single-cell imaging experiments were performed to simultaneously monitor changes in [Ca2+ ]i and the occurrence of AE. Em hyperpolarization turned [Ca2+ ]i dynamics in NC sperm from spontaneously oscillating into a sustained slow [Ca2+ ]i increase. The addition of progesterone (P4) or K+ to Valinomycin-treated sperm promoted that a significant number of cells displayed a transitory rise in [Ca2+ ]i which then underwent AE. Altogether, our results demonstrate that Em hyperpolarization is necessary and sufficient to prepare human sperm for the AE. Furthermore, this Em change decreased Ca2+ oscillations that block the occurrence of AE, providing strong experimental evidence of the molecular mechanism that drives the acquisition of acrosomal responsiveness.


Asunto(s)
Reacción Acrosómica , Señalización del Calcio , Exocitosis , Potenciales de la Membrana , Capacitación Espermática , Espermatozoides/fisiología , Humanos , Masculino , Fosforilación
5.
FASEB J ; 35(8): e21723, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34224609

RESUMEN

Sperm acquire the ability to fertilize in a process called capacitation and undergo hyperactivation, a change in the motility pattern, which depends on Ca2+ transport by CatSper channels. CatSper is essential for fertilization and it is subjected to a complex regulation that is not fully understood. Here, we report that similar to CatSper, Cdc42 distribution in the principal piece is confined to four linear domains and this localization is disrupted in CatSper1-null sperm. Cdc42 inhibition impaired CatSper activity and other Ca2+ -dependent downstream events resulting in a severe compromise of the sperm fertilizing potential. We also demonstrate that Cdc42 is essential for CatSper function by modulating cAMP production by soluble adenylate cyclase (sAC), providing a new regulatory mechanism for the stimulation of CatSper by the cAMP-dependent pathway. These results reveal a broad mechanistic insight into the regulation of Ca2+ in mammalian sperm, a matter of critical importance in male infertility as well as in contraception.


Asunto(s)
Canales de Calcio/metabolismo , Espermatozoides/metabolismo , Proteína de Unión al GTP cdc42/metabolismo , Animales , Calcio/metabolismo , Canales de Calcio/deficiencia , Canales de Calcio/genética , Señalización del Calcio , AMP Cíclico/metabolismo , Femenino , Fertilización In Vitro , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Biológicos , Transducción de Señal , Capacitación Espermática/fisiología , Motilidad Espermática/fisiología , Cola del Espermatozoide/metabolismo , Espermatozoides/efectos de los fármacos , Espermatozoides/ultraestructura , Proteína de Unión al GTP cdc42/antagonistas & inhibidores
6.
FASEB J ; 34(3): 3902-3914, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31944423

RESUMEN

To study the pathological effects of continuous hyperprolactinemia on food intake mechanisms we used female mice that lack dopamine D2 receptors in lactotropes (lacDrd2KO). These mice had lifelong hyperprolactinemia, increased food intake, and gradual development of obesity from 5 to 10 months of age. Ongoing endogenous prolactin signaling in lacDrd2KO mice was evidenced by increased basal phosphorylation of STAT5b in hypothalamic areas related to food intake, such as the arcuate (ARN), dorsomedial (DMN), and ventromedial nuclei. In the ARN of young lacDrd2KO mice there were higher Prlr mRNA levels and in obese 10-month-old lacDrd2KO mice increased expression of the orexigenic genes Neuropeptide Y (Npy) and Agouti-related peptide, compared to controls. Furthermore, Npy expression was increased in the DMN, probably contributing to increased food intake and decreased expression of Uncoupling protein-1 in brown adipose tissue, both events favoring weight gain. Leptin resistance in obese lacD2RKO mice was evidenced by its failure to lower food intake and a dampened response of STAT3 phosphorylation, specifically in the mediobasal hypothalamus. Our results suggest that pathological chronically high prolactin levels, as found in psychiatric treatments or patients with prolactinomas, may impact on specific hypothalamic nuclei altering gene expression, leptin response, and food intake.


Asunto(s)
Núcleo Arqueado del Hipotálamo/efectos de los fármacos , Núcleo Arqueado del Hipotálamo/metabolismo , Ingestión de Alimentos/efectos de los fármacos , Prolactina/farmacología , Animales , Glucemia/efectos de los fármacos , Ensayo de Inmunoadsorción Enzimática , Inmunohistoquímica , Insulina/sangre , Ratones , Ratones Noqueados , Reacción en Cadena en Tiempo Real de la Polimerasa , Factor de Transcripción STAT5/genética , Factor de Transcripción STAT5/metabolismo
7.
Phys Chem Chem Phys ; 23(5): 3281-3289, 2021 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-33506828

RESUMEN

Complex materials composed of two and three elements with high Li-ion storage capacity are investigated and tested as lithium-ion battery (LiB) negative electrodes. Namely, anodes containing tin, silicon, and graphite show very good performance because of the large gravimetric and volumetric capacity of silicon and structural support provided by tin and graphite. The performance of the composites during the first cycles was studied using ex situ magic angle spinning (MAS) 7Li Nuclear Magnetic Resonance (NMR), density functional theory (DFT) calculations, and electrochemical techniques. The best performance was obtained for Sn/Si/graphite in a 1 : 1 : 1 proportion, due to an emergent effect of the interaction between Sn and Si. The results suggest a stabilization effect of Sn over Si, providing a physical constraint that prevents Si pulverization. This mechanism ensures good cyclability over more than one hundred cycles, low capacity fading and high specific capacity.

8.
J Cell Sci ; 131(21)2018 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-30301778

RESUMEN

Filamentous actin (F-actin) is a key factor in exocytosis in many cell types. In mammalian sperm, acrosomal exocytosis (denoted the acrosome reaction or AR), a special type of controlled secretion, is regulated by multiple signaling pathways and the actin cytoskeleton. However, the dynamic changes of the actin cytoskeleton in live sperm are largely not understood. Here, we used the powerful properties of SiR-actin to examine actin dynamics in live mouse sperm at the onset of the AR. By using a combination of super-resolution microscopy techniques to image sperm loaded with SiR-actin or sperm from transgenic mice containing Lifeact-EGFP, six regions containing F-actin within the sperm head were revealed. The proportion of sperm possessing these structures changed upon capacitation. By performing live-cell imaging experiments, we report that dynamic changes of F-actin during the AR occur in specific regions of the sperm head. While certain F-actin regions undergo depolymerization prior to the initiation of the AR, others remain unaltered or are lost after exocytosis occurs. Our work emphasizes the utility of live-cell nanoscopy, which will undoubtedly impact the search for mechanisms that underlie basic sperm functions.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Acrosoma/metabolismo , Citoesqueleto de Actina/metabolismo , Espermatozoides/metabolismo , Animales , Exocitosis , Masculino , Ratones , Imagen Molecular
9.
J Biol Chem ; 293(24): 9435-9447, 2018 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-29700114

RESUMEN

Protein kinase A (PKA) is a broad-spectrum Ser/Thr kinase involved in the regulation of several cellular activities. Thus, its precise activation relies on being localized at specific subcellular places known as discrete PKA signalosomes. A-Kinase anchoring proteins (AKAPs) form scaffolding assemblies that play a pivotal role in PKA regulation by restricting its activity to specific microdomains. Because one of the first signaling events observed during mammalian sperm capacitation is PKA activation, understanding how PKA activity is restricted in space and time is crucial to decipher the critical steps of sperm capacitation. Here, we demonstrate that the anchoring of PKA to AKAP is not only necessary but also actively regulated during sperm capacitation. However, we find that once capacitated, the release of PKA from AKAP promotes a sudden Ca2+ influx through the sperm-specific Ca2+ channel CatSper, starting a tail-to-head Ca2+ propagation that triggers the acrosome reaction. Three-dimensional super-resolution imaging confirmed a redistribution of PKA within the flagellar structure throughout the capacitation process, which depends on anchoring to AKAP. These results represent a new signaling event that involves CatSper Ca2+ channels in the acrosome reaction, sensitive to PKA stimulation upon release from AKAP.


Asunto(s)
Proteínas de Anclaje a la Quinasa A/metabolismo , Reacción Acrosómica , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Mapas de Interacción de Proteínas , Capacitación Espermática , Espermatozoides/citología , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/análisis , Exocitosis , Fertilización , Masculino , Ratones , Ratones Endogámicos C57BL , Transducción de Señal , Espermatozoides/metabolismo
10.
J Biol Chem ; 293(25): 9924-9936, 2018 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-29743243

RESUMEN

To fertilize an egg, sperm must reside in the female reproductive tract to undergo several maturational changes that are collectively referred to as capacitation. From a molecular point of view, the HCO3--dependent activation of the atypical soluble adenylyl cyclase (ADCY10) is one of the first events that occurs during capacitation and leads to the subsequent cAMP-dependent activation of protein kinase A (PKA). Capacitation is also accompanied by hyperpolarization of the sperm plasma membrane. We previously reported that PKA activation is necessary for CFTR (cystic fibrosis transmembrane conductance regulator channel) activity and for the modulation of membrane potential (Em). However, the main HCO3- transporters involved in the initial transport and the PKA-dependent Em changes are not well known nor characterized. Here, we analyzed how the activity of CFTR regulates Em during capacitation and examined its relationship with an electrogenic Na+/HCO3- cotransporter (NBC) and epithelial Na+ channels (ENaCs). We observed that inhibition of both CFTR and NBC decreased HCO3- influx, resulting in lower PKA activity, and that events downstream of the cAMP activation of PKA are essential for the regulation of Em. Addition of a permeable cAMP analog partially rescued the inhibitory effects caused by these inhibitors. HCO3- also produced a rapid membrane hyperpolarization mediated by ENaC channels, which contribute to the regulation of Em during capacitation. Altogether, we demonstrate for the first time, that NBC cotransporters and ENaC channels are essential in the CFTR-dependent activation of the cAMP/PKA signaling pathway and Em regulation during human sperm capacitation.


Asunto(s)
Bicarbonatos/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Canales Epiteliales de Sodio/metabolismo , Potenciales de la Membrana , Capacitación Espermática , Espermatozoides/fisiología , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Humanos , Masculino , Fosforilación , Transducción de Señal , Sodio/metabolismo , Simportadores de Sodio-Bicarbonato/metabolismo
11.
J Cell Physiol ; 233(12): 9685-9700, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29953592

RESUMEN

Mammalian sperm must undergo a functionally defined process called capacitation to be able to fertilize oocytes. They become capacitated in vivo by interacting with the female reproductive tract or in vitro in a defined capacitation medium that contains bovine serum albumin, calcium (Ca2+ ), and bicarbonate (HCO3- ). In this work, sperm were double stained with propidium iodide and the Ca2+ dye Fluo-4 AM and analyzed by flow cytometry to determine changes in intracellular Ca2+ concentration ([Ca2+ ]i ) in individual live sperm. An increase in [Ca2+ ]i was observed in a subpopulation of capacitated live sperm when compared with noncapacitated ones. Sperm exposed to the capacitating medium displayed a rapid increase in [Ca2+ ]i within 1 min of incubation, which remained sustained for 90 min. These rise in [Ca2+ ]i after 90 min of incubation in the capacitating medium was evidenced by an increase in the normalized median fluorescence intensity. This increase was dependent on the presence of extracellular Ca2+ and, at least in part, reflected the contribution of a new subpopulation of sperm with higher [Ca2+ ]i . In addition, it was determined that the capacitation-associated [Ca2+ ]i increase was dependent of CatSper channels, as sperm derived from CatSper knockout (CatSper KO) or incubated in the presence of CatSper inhibitors failed to increase [Ca2+ ]i . Surprisingly, a minimum increase in [Ca2+ ]i was also observed in CatSper KO sperm suggesting the existence of other Ca2+ transport systems. Altogether, these results indicate that a subpopulation of sperm increases [Ca2+ ]i very rapidly during capacitation mainly due to a CatSper-mediated influx of extracellular Ca2+ .


Asunto(s)
Canales de Calcio/genética , Calcio/farmacología , Capacitación Espermática/genética , Espermatozoides/metabolismo , Animales , Calcio/metabolismo , Señalización del Calcio/efectos de los fármacos , Femenino , Citometría de Flujo , Técnicas de Inactivación de Genes , Genitales Femeninos/metabolismo , Genitales Femeninos/fisiología , Humanos , Masculino , Ratones , Ratones Noqueados , Motilidad Espermática/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Espermatozoides/crecimiento & desarrollo
12.
Dev Biol ; 405(2): 237-49, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26169470

RESUMEN

Mammalian sperm must acquire their fertilizing ability after a series of biochemical modifications in the female reproductive tract collectively called capacitation to undergo acrosomal exocytosis, a process that is essential for fertilization. Actin dynamics play a central role in controlling the process of exocytosis in somatic cells as well as in sperm from several mammalian species. In somatic cells, small GTPases of the Rho family are widely known as master regulators of actin dynamics. However, the role of these proteins in sperm has not been studied in detail. In the present work we characterized the participation of small GTPases of the Rho family in the signaling pathway that leads to actin polymerization during mouse sperm capacitation. We observed that most of the proteins of this signaling cascade and their effector proteins are expressed in mouse sperm. The activation of the signaling pathways of cAMP/PKA, RhoA/C and Rac1 is essential for LIMK1 activation by phosphorylation on Threonine 508. Serine 3 of Cofilin is phosphorylated by LIMK1 during capacitation in a transiently manner. Inhibition of LIMK1 by specific inhibitors (BMS-3) resulted in lower levels of actin polymerization during capacitation and a dramatic decrease in the percentage of sperm that undergo acrosomal exocytosis. Thus, we demonstrated for the first time that the master regulators of actin dynamics in somatic cells are present and active in mouse sperm. Combining the results of our present study with other results from the literature, we have proposed a working model regarding how LIMK1 and Cofilin control acrosomal exocytosis in mouse sperm.


Asunto(s)
Reacción Acrosómica/fisiología , Cofilina 1/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Exocitosis , Quinasas Lim/metabolismo , Capacitación Espermática/fisiología , Actinas/metabolismo , Animales , Cruzamientos Genéticos , Regulación de la Expresión Génica , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Fluorescente , Fosforilación , Transducción de Señal , Espermatozoides/metabolismo
13.
Am J Physiol Endocrinol Metab ; 311(6): E974-E988, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27802964

RESUMEN

We studied the impact of high prolactin titers on liver and adipocyte gene expression related to glucose and insulin homeostasis in correlation with obesity onset. To that end we used mutant female mice that selectively lack dopamine type 2 receptors (D2Rs) from pituitary lactotropes (lacDrd2KO), which have chronic high prolactin levels associated with increased body weight, marked increments in fat depots, adipocyte size, and serum lipids, and a metabolic phenotype that intensifies with age. LacDrd2KO mice of two developmental ages, 5 and 10 mo, were used. In the first time point, obesity and increased body weight are marginal, although mice are hyperprolactinemic, whereas at 10 mo there is marked adiposity with a 136% increase in gonadal fat and a 36% increase in liver weight due to lipid accumulation. LacDrd2KO mice had glucose intolerance, hyperinsulinemia, and impaired insulin response to glucose already in the early stages of obesity, but changes in liver and adipose tissue transcription factors were time and tissue dependent. In chronic hyperprolactinemic mice liver Prlr were upregulated, there was liver steatosis, altered expression of the lipogenic transcription factor Chrebp, and blunted response of Srebp-1c to refeeding at 5 mo of age, whereas no effect was observed in the glycogenesis pathway. On the other hand, in adipose tissue a marked decrease in lipogenic transcription factor expression was observed when morbid obesity was already settled. These adaptive changes underscore the role of prolactin signaling in different tissues to promote energy storage.


Asunto(s)
Adipocitos/metabolismo , Hepatocitos/metabolismo , Hiperprolactinemia/genética , Hígado/metabolismo , Obesidad/genética , Receptores de Dopamina D2/genética , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Ensayo de Inmunoadsorción Enzimática , Hígado Graso/genética , Hígado Graso/metabolismo , Femenino , Expresión Génica , Glucosa/metabolismo , Prueba de Tolerancia a la Glucosa , Homeostasis/genética , Hiperprolactinemia/metabolismo , Inmunohistoquímica , Insulina/metabolismo , Lactotrofos/metabolismo , Lipogénesis/genética , Ratones , Ratones Noqueados , Proteínas Nucleares/genética , Obesidad/metabolismo , Radioinmunoensayo , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores de Prolactina/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Factores de Transcripción/genética , Regulación hacia Arriba
14.
Adv Anat Embryol Cell Biol ; 220: 129-44, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27194353

RESUMEN

Mammalian sperm require to undergo an exocytotic process called acrosomal exocytosis in order to be able to fuse with the oocyte. This ability is acquired during the course of sperm capacitation. This review is focused on one aspect related to this acquisition: the role of the actin cytoskeleton. Evidence from different laboratories indicates that actin polymerization occurs during capacitation, and the detection of several actin-related proteins suggests that the cytoskeleton is involved in important sperm functions. In other mammalian cells, the cortical actin network acts as a dominant negative clamp which blocks constitutive exocytosis but, at the same time, is necessary to prepare the cell to undergo regulated exocytosis. Thus, F-actin stabilizes structures generated by exocytosis and supports the physiological progression of this process. Is this also the case in mammalian sperm? This review summarizes what is currently known about actin and its related proteins in the male gamete, with particular emphasis on their role in acrosomal exocytosis.


Asunto(s)
Reacción Acrosómica/genética , Acrosoma/metabolismo , Citoesqueleto de Actina/genética , Actinas/genética , Exocitosis/genética , Capacitación Espermática/genética , Acrosoma/química , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Factores Despolimerizantes de la Actina/genética , Factores Despolimerizantes de la Actina/metabolismo , Actinas/química , Actinas/metabolismo , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Regulación de la Expresión Génica , Humanos , Quinasas Lim/genética , Quinasas Lim/metabolismo , Masculino , Ratones , Fosfolipasa D/genética , Fosfolipasa D/metabolismo , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Transducción de Señal
15.
Pharmacol Res ; 109: 74-80, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26748034

RESUMEN

The importance of dopamine in central nervous system function is well known, but its effects on glucose homeostasis and pancreatic ß cell function are beginning to be unraveled. Mutant mice lacking dopamine type 2 receptors (D2R) are glucose intolerant and have abnormal insulin secretion. In humans, administration of neuroleptic drugs, which block dopamine receptors, may cause hyperinsulinemia, increased weight gain and glucose intolerance. Conversely, treatment with the dopamine precursor l-DOPA in patients with Parkinson's disease reduces insulin secretion upon oral glucose tolerance test, and bromocriptine improves glycemic control and glucose tolerance in obese type 2 diabetic patients as well as in non diabetic obese animals and humans. The actions of dopamine on glucose homeostasis and food intake impact both the autonomic nervous system and the endocrine system. Different central actions of the dopamine system may mediate its metabolic effects such as: (i) regulation of hypothalamic noradrenaline output, (ii) participation in appetite control, and (iii) maintenance of the biological clock in the suprachiasmatic nucleus. On the other hand, dopamine inhibits prolactin, which has metabolic functions; and, at the pancreatic beta cell dopamine D2 receptors inhibit insulin secretion. We review the evidence obtained in animal models and clinical studies that posited dopamine receptors as key elements in glucose homeostasis and ultimately led to the FDA approval of bromocriptine in adults with type 2 diabetes to improve glycemic control. Furthermore, we discuss the metabolic consequences of treatment with neuroleptics which target the D2R, that should be monitored in psychiatric patients to prevent the development in diabetes, weight gain, and hypertriglyceridemia.


Asunto(s)
Diabetes Mellitus Tipo 2/tratamiento farmacológico , Dopaminérgicos/uso terapéutico , Glucosa/metabolismo , Acromegalia/tratamiento farmacológico , Animales , Bromocriptina/uso terapéutico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Dopaminérgicos/efectos adversos , Homeostasis , Humanos , Enfermedad de Parkinson/tratamiento farmacológico , Polimorfismo Genético , Prolactinoma/tratamiento farmacológico , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo
16.
J Neurosci ; 33(13): 5834-42, 2013 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-23536095

RESUMEN

Competition between adult males for limited resources such as food and receptive females is shaped by the male pattern of pituitary growth hormone (GH) secretion that determines body size and the production of urinary pheromones involved in male-to-male aggression. In the brain, dopamine (DA) provides incentive salience to stimuli that predict the availability of food and sexual partners. Although the importance of the GH axis and central DA neurotransmission in social dominance and fitness is clearly appreciated, the two systems have always been studied unconnectedly. Here we conducted a cell-specific genetic dissection study in conditional mutant mice that selectively lack DA D2 receptors (D2R) from pituitary lactotropes (lacDrd2KO) or neurons (neuroDrd2KO). Whereas lacDrd2KO mice developed a normal GH axis, neuroDrd2KO mice displayed fewer somatotropes; reduced hypothalamic Ghrh expression, pituitary GH content, and serum IGF-I levels; and exhibited reduced body size and weight. As a consequence of a GH axis deficit, neuroDrd2KO adult males excreted low levels of major urinary proteins and their urine failed to promote aggression and territorial behavior in control male challengers, in contrast to the urine taken from control adult males. These findings reveal that central D2Rs mediate a neuroendocrine-exocrine cascade that controls the maturation of the GH axis and downstream signals that are critical for fitness, social dominance, and competition between adult males.


Asunto(s)
Tamaño Corporal/fisiología , Hormona del Crecimiento/metabolismo , Hipófisis/metabolismo , Prolactina/metabolismo , Receptores de Dopamina D2/metabolismo , Análisis de Varianza , Animales , Benzamidas/farmacocinética , Tamaño Corporal/efectos de los fármacos , Tamaño Corporal/genética , Peso Corporal/efectos de los fármacos , Peso Corporal/genética , Estudios de Casos y Controles , Catatonia/inducido químicamente , Catatonia/metabolismo , Antagonistas de Dopamina/farmacología , Ingestión de Alimentos/efectos de los fármacos , Ingestión de Alimentos/genética , Ingestión de Alimentos/fisiología , Femenino , Haloperidol/farmacología , Factor I del Crecimiento Similar a la Insulina/metabolismo , Proteínas de Filamentos Intermediarios/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Nestina , Oligodesoxirribonucleótidos Antisentido/farmacología , Feromonas/orina , Hipófisis/efectos de los fármacos , Prolactina/genética , Unión Proteica/efectos de los fármacos , Unión Proteica/genética , Proteínas/metabolismo , Radioinmunoensayo , Receptores de Dopamina D2/deficiencia , Receptores de Dopamina D2/genética , Predominio Social , Territorialidad , Tritio/farmacocinética
17.
Front Cell Dev Biol ; 12: 1386980, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38803392

RESUMEN

Hyperpolarization of the membrane potential (Em), a phenomenon regulated by SLO3 channels, stands as a central feature in sperm capacitation-a crucial process conferring upon sperm the ability to fertilize the oocyte. In vitro studies demonstrated that Em hyperpolarization plays a pivotal role in facilitating the mechanisms necessary for the development of hyperactivated motility (HA) and acrosomal exocytosis (AE) occurrence. Nevertheless, the physiological significance of sperm Em within the female reproductive tract remains unexplored. As an approach to this question, we studied sperm migration and AE incidence within the oviduct in the absence of Em hyperpolarization using a novel mouse model established by crossbreeding of SLO3 knock-out (KO) mice with EGFP/DsRed2 mice. Sperm from this model displays impaired HA and AE in vitro. Interestingly, examination of the female reproductive tract shows that SLO3 KO sperm can reach the ampulla, mirroring the quantity of sperm observed in wild-type (WT) counterparts, supporting that the HA needed to reach the fertilization site is not affected. However, a noteworthy distinction emerges-unlike WT sperm, the majority of SLO3 KO sperm arrive at the ampulla with their acrosomes still intact. Of the few SLO3 KO sperm that do manage to reach the oocytes within this location, fertilization does not occur, as indicated by the absence of sperm pronuclei in the MII-oocytes recovered post-mating. In vitro, SLO3 KO sperm fail to penetrate the ZP and fuse with the oocytes. Collectively, these results underscore the vital role of Em hyperpolarization in AE and fertilization within their physiological context, while also revealing that Em is not a prerequisite for the development of the HA motility, essential for sperm migration through the female tract to the ampulla.

18.
bioRxiv ; 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38496535

RESUMEN

Sperm capacitation, crucial for fertilization, occurs in the female reproductive tract and can be replicated in vitro using a medium rich in bicarbonate, calcium, and albumin. These components trigger the cAMP-PKA signaling cascade, proposed to promote hyperpolarization of the mouse sperm plasma membrane through activation of SLO3 K+ channel. Hyperpolarization is a hallmark of capacitation: proper membrane hyperpolarization renders higher in vitro fertilizing ability, while Slo3 KO mice are infertile. However, the precise regulation of SLO3 opening remains elusive. Our study challenges the involvement of PKA in this event and reveals the role of Na+/H+ exchangers. During capacitation, calcium increase through CatSper channels activates NHE1, while cAMP directly stimulates the sperm-specific NHE, collectively promoting the alkalinization threshold needed for SLO3 opening. Hyperpolarization then feeds back Na+/H+ activity. Our work is supported by pharmacology, and a plethora of KO mouse models, and proposes a novel pathway leading to hyperpolarization.

19.
Pituitary ; 16(3): 303-10, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22886682

RESUMEN

The role of angiogenesis in human pituitary tumor progression is questioned. Our aim was to characterize the morphologic changes that occur in the vasculature of pituitary adenomas, in correlation with the expression of nestin, a protein found in endothelial cells of newly formed vessels of developing organs. We also evaluated the relation of angiogenic markers and nestin with Ki-67 index. Immunohistochemical studies were performed on paraffin embedded samples of 47 pituitary adenomas and six normal pituitaries. We determined microvessel density (number of CD31+ or CD34+ vessels per square millimetre), vascular area (cumulative area occupied by vessels), average vessel size, and further classified vessels as small (< 100 µm2) or large (> 100 µm2). We correlated the above parameters with nestin expression and Ki-67 index. Lower vascular area compared to normal tissue was found in adenomas (p < 0.05). Interestingly, pituitary adenomas had significantly more small vessels than control pituitaries (p < 0.04 for CD31 and CD34). In tumors many capillaries were positive for nestin, while scarce staining was detected in controls, so that nestin positive area was significantly higher in tumors. Furthermore, nestin area correlated positively with the % of small vessels. Ki-67 correlated neither with vascular area nor with nestin expression. In human pituitary tumors there was a predominance of small capillaries in correlation with increased expression of the progenitor marker nestin. We suggest that angiogenesis is an active process in these tumors, in spite of their low total vascular area when compared to normal pituitaries.


Asunto(s)
Adenoma/metabolismo , Nestina/metabolismo , Neoplasias Hipofisarias/metabolismo , Adulto , Anciano , Vasos Sanguíneos/metabolismo , Humanos , Inmunohistoquímica , Técnicas In Vitro , Antígeno Ki-67/metabolismo , Persona de Mediana Edad , Neovascularización Patológica , Adulto Joven
20.
Front Cell Dev Biol ; 11: 1010306, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36743410

RESUMEN

The exclusive expression of CatSper in sperm and its critical role in sperm function makes this channel an attractive target for contraception. The strategy of blocking CatSper as a male, non-hormonal contraceptive has not been fully explored due to the lack of robust screening methods to discover novel and specific inhibitors. The reason for this lack of appropriate methodology is the structural and functional complexity of this channel. We have developed a high-throughput method to screen drugs with the capacity to block CatSper in mammalian sperm. The assay is based on removing external free divalent cations by chelation, inducing CatSper to efficiently conduct monovalent cations. Since Na+ is highly concentrated in the extracellular milieu, a sudden influx depolarizes the cell. Using CatSper1 KO sperm we demonstrated that this depolarization depends on CatSper function. A membrane potential (Em) assay was combined with fluorescent cell barcoding (FCB), enabling higher throughput flow cytometry based on unique fluorescent signatures of different sperm samples. These differentially labeled samples incubated in distinct experimental conditions can be combined into one tube for simultaneous acquisition. In this way, acquisition times are highly reduced, which is essential to perform larger screening experiments for drug discovery using live cells. Altogether, a simple strategy for assessing CatSper was validated, and this assay was used to develop a high-throughput drug screening for new CatSper blockers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA