Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Cell ; 143(1): 111-21, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20887896

RESUMEN

Spatial distribution of the plant hormone auxin regulates multiple aspects of plant development. These self-regulating auxin gradients are established by the action of PIN auxin transporters, whose activity is regulated by their constitutive cycling between the plasma membrane and endosomes. Here, we show that auxin signaling by the auxin receptor AUXIN-BINDING PROTEIN 1 (ABP1) inhibits the clathrin-mediated internalization of PIN proteins. ABP1 acts as a positive factor in clathrin recruitment to the plasma membrane, thereby promoting endocytosis. Auxin binding to ABP1 interferes with this action and leads to the inhibition of clathrin-mediated endocytosis. Our study demonstrates that ABP1 mediates a nontranscriptional auxin signaling that regulates the evolutionarily conserved process of clathrin-mediated endocytosis and suggests that this signaling may be essential for the developmentally important feedback of auxin on its own transport.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/metabolismo , Clatrina/metabolismo , Endocitosis , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/metabolismo , Receptores de Superficie Celular/metabolismo , Membrana Celular/metabolismo , Proteínas de Transporte de Membrana/metabolismo
2.
New Phytol ; 243(3): 1065-1081, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38874374

RESUMEN

The phytohormone abscisic acid (ABA) functions in the control of plant stress responses, particularly in drought stress. A significant mechanism in attenuating and terminating ABA signals involves regulated protein turnover, with certain ABA receptors, despite their main presence in the cytosol and nucleus, subjected to vacuolar degradation via the Endosomal Sorting Complex Required for Transport (ESCRT) machinery. Collectively our findings show that discrete TOM1-LIKE (TOL) proteins, which are functional ESCRT-0 complex substitutes in plants, affect the trafficking for degradation of core components of the ABA signaling and transport machinery. TOL2,3,5 and 6 modulate ABA signaling where they function additively in degradation of ubiquitinated ABA receptors and transporters. TOLs colocalize with their cargo in different endocytic compartments in the root epidermis and in guard cells of stomata, where they potentially function in ABA-controlled stomatal aperture. Although the tol2/3/5/6 quadruple mutant plant line is significantly more drought-tolerant and has a higher ABA sensitivity than control plant lines, it has no obvious growth or development phenotype under standard conditions, making the TOL genes ideal candidates for engineering to improved plant performance.


Asunto(s)
Ácido Abscísico , Proteínas de Arabidopsis , Arabidopsis , Endosomas , Estomas de Plantas , Transducción de Señal , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Endosomas/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Estomas de Plantas/fisiología , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Sequías , Mutación/genética , Proteolisis , Transporte de Proteínas
3.
Int J Mol Sci ; 23(12)2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35743207

RESUMEN

Intracellular sorting and the abundance of sessile plant plasma membrane proteins are imperative for sensing and responding to environmental inputs. A key determinant for inducing adjustments in protein localization and hence functionality is their reversible covalent modification by the small protein modifier ubiquitin, which is for example responsible for guiding proteins from the plasma membrane to endosomal compartments. This mode of membrane protein sorting control requires the catalytic activity of E3 ubiquitin ligases, amongst which members of the RING DOMAIN LIGASE (RGLG) family have been implicated in the formation of lysine 63-linked polyubiquitin chains, serving as a prime signal for endocytic vacuolar cargo sorting. Nevertheless, except from some indirect implications for such RGLG activity, no further evidence for their role in plasma membrane protein sorting has been provided so far. Here, by employing RGLG1 reporter proteins combined with assessment of plasma membrane protein localization in a rglg1 rglg2 loss-of-function mutant, we demonstrate a role for RGLGs in cargo trafficking between plasma membrane and endosomal compartments. Specifically, our findings unveil a requirement for RGLG1 association with endosomal sorting compartments for fundamental aspects of plant morphogenesis, underlining a vital importance for ubiquitylation-controlled intracellular sorting processes.


Asunto(s)
Ubiquitina-Proteína Ligasas , Ubiquitina , Proteínas de la Membrana/metabolismo , Transporte de Proteínas , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
4.
Int J Mol Sci ; 22(5)2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33803128

RESUMEN

Root architecture and growth are decisive for crop performance and yield, and thus a highly topical research field in plant sciences. The root system of the model plant Arabidopsis thaliana is the ideal system to obtain insights into fundamental key parameters and molecular players involved in underlying regulatory circuits of root growth, particularly in responses to environmental stimuli. Root gravitropism, directional growth along the gravity, in particular represents a highly sensitive readout, suitable to study adjustments in polar auxin transport and to identify molecular determinants involved. This review strives to summarize and give an overview into the function of PIN-FORMED auxin transport proteins, emphasizing on their sorting and polarity control. As there already is an abundance of information, the focus lies in integrating this wealth of information on mechanisms and pathways. This overview of a highly dynamic and complex field highlights recent developments in understanding the role of auxin in higher plants. Specifically, it exemplifies, how analysis of a single, defined growth response contributes to our understanding of basic cellular processes in general.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Gravitropismo/fisiología , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Transporte Biológico Activo
5.
Development ; 141(15): 2924-38, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25053426

RESUMEN

Plants are permanently situated in a fixed location and thus are well adapted to sense and respond to environmental stimuli and developmental cues. At the cellular level, several of these responses require delicate adjustments that affect the activity and steady-state levels of plasma membrane proteins. These adjustments involve both vesicular transport to the plasma membrane and protein internalization via endocytic sorting. A substantial part of our current knowledge of plant plasma membrane protein sorting is based on studies of PIN-FORMED (PIN) auxin transport proteins, which are found at distinct plasma membrane domains and have been implicated in directional efflux of the plant hormone auxin. Here, we discuss the mechanisms involved in establishing such polar protein distributions, focusing on PINs and other key plant plasma membrane proteins, and we highlight the pathways that allow for dynamic adjustments in protein distribution and turnover, which together constitute a versatile framework that underlies the remarkable capabilities of plants to adjust growth and development in their ever-changing environment.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Arabidopsis/metabolismo , Clatrina/metabolismo , Endocitosis , Exocitosis , Aparato de Golgi/metabolismo , Ácidos Indolacéticos/metabolismo , Ligandos , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/metabolismo , Plantas/metabolismo , Transporte de Proteínas , Transducción de Señal , Ubiquitina/metabolismo
6.
Int J Mol Sci ; 18(11)2017 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-29109378

RESUMEN

Coordination of plant development requires modulation of growth responses that are under control of the phytohormone auxin. PIN-FORMED plasma membrane proteins, involved in intercellular transport of the growth regulator, are key to the transmission of such auxin signals and subject to multilevel surveillance mechanisms, including reversible post-translational modifications. Apart from well-studied PIN protein modifications, namely phosphorylation and ubiquitylation, no further post-translational modifications have been described so far. Here, we focused on root-specific Arabidopsis PIN2 and explored functional implications of two evolutionary conserved cysteines, by a combination of in silico and molecular approaches. PIN2 sequence alignments and modeling predictions indicated that both cysteines are facing the cytoplasm and therefore would be accessible to redox status-controlled modifications. Notably, mutant pin2C-A alleles retained functionality, demonstrated by their ability to almost completely rescue defects of a pin2 null allele, whereas high resolution analysis of pin2C-A localization revealed increased intracellular accumulation, and altered protein distribution within plasma membrane micro-domains. The observed effects of cysteine replacements on root growth and PIN2 localization are consistent with a model in which redox status-dependent cysteine modifications participate in the regulation of PIN2 mobility, thereby fine-tuning polar auxin transport.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Secuencia Conservada , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Cisteína/genética , Ácidos Indolacéticos/metabolismo , Microdominios de Membrana/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Transporte de Proteínas
7.
EMBO J ; 30(6): 1149-61, 2011 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-21336258

RESUMEN

Brassinosteroids (BRs) are steroid hormones that are essential for the development of plants. A tight control of BR homeostasis is vital for modulating their impact on growth responses. Although it is recognized that the rapid adaptation of de novo synthesis has a key role in adjusting required BR levels, our knowledge of the mechanisms governing feedback control is limited. In this study, we identify the transcription factor CESTA as a regulator of BR biosynthesis. ces-D was isolated in a screen of Arabidopsis mutants by BR over-accumulation phenotypes. Loss-of-function analysis and the use of a dominant repressor version revealed functional overlap among CESTA and its homologues and confirmed the role of CESTA in the positive control of BR-biosynthetic gene expression. We provide evidence that CESTA interacts with its homologue BEE1 and can directly bind to a G-box motif in the promoter of the BR biosynthesis gene CPD. Moreover, we show that CESTA subnuclear localization is BR regulated and discuss a model, in which CESTA interplays with BEE1 to control BR biosynthesis and other BR responses.


Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , Vías Biosintéticas/genética , Colestanoles/metabolismo , Regulación de la Expresión Génica , Reguladores del Crecimiento de las Plantas/biosíntesis , Esteroides Heterocíclicos/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brasinoesteroides , Mapeo de Interacción de Proteínas , Factores de Transcripción/genética
8.
J Exp Bot ; 66(16): 5103-12, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26041320

RESUMEN

The phytohormone auxin is a vital growth regulator in plants. In the root epidermis auxin steers root organ growth. However, the mechanisms that allow adjacent tissues to integrate growth are largely unknown. Here, the focus is on neighbouring epidermal root tissues to assess the integration of auxin-related growth responses. The pharmacologic, genetic, and live-cell imaging approaches reveal that PIN2 auxin efflux carriers are differentially controlled in tricho- and atrichoblast cells. PIN2 proteins show lower abundance at the plasma membrane of trichoblast cells, despite showing higher rates of intracellular trafficking in these cells. The data suggest that PIN2 proteins display distinct cell-type-dependent trafficking rates to the lytic vacuole for degradation. Based on this insight, it is hypothesized that auxin-dependent processes are distinct in tricho- and atrichoblast cells. Moreover, genetic interference with epidermal patterning supports this assumption and suggests that tricho- and atrichoblasts have distinct importance for auxin-sensitive root growth and gravitropic responses.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Ácidos Indolacéticos/metabolismo , Epidermis de la Planta/crecimiento & desarrollo , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Células Vegetales/metabolismo , Células Vegetales/ultraestructura , Epidermis de la Planta/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Transporte de Proteínas
9.
Nature ; 459(7250): 1136-40, 2009 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-19506555

RESUMEN

The plant signalling molecule auxin provides positional information in a variety of developmental processes by means of its differential distribution (gradients) within plant tissues. Thus, cellular auxin levels often determine the developmental output of auxin signalling. Conceptually, transmembrane transport and metabolic processes regulate the steady-state levels of auxin in any given cell. In particular, PIN auxin-efflux-carrier-mediated, directional transport between cells is crucial for generating auxin gradients. Here we show that Arabidopsis thaliana PIN5, an atypical member of the PIN gene family, encodes a functional auxin transporter that is required for auxin-mediated development. PIN5 does not have a direct role in cell-to-cell transport but regulates intracellular auxin homeostasis and metabolism. PIN5 localizes, unlike other characterized plasma membrane PIN proteins, to endoplasmic reticulum (ER), presumably mediating auxin flow from the cytosol to the lumen of the ER. The ER localization of other PIN5-like transporters (including the moss PIN) indicates that the diversification of PIN protein functions in mediating auxin homeostasis at the ER, and cell-to-cell auxin transport at the plasma membrane, represent an ancient event during the evolution of land plants.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiología , Retículo Endoplásmico/metabolismo , Homeostasis/fisiología , Ácidos Indolacéticos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Arabidopsis/clasificación , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Células Cultivadas , Técnicas de Inactivación de Genes , Proteínas de Transporte de Membrana/genética , Mutación , Fenotipo , Filogenia , Reguladores del Crecimiento de las Plantas/metabolismo
10.
Proc Natl Acad Sci U S A ; 109(21): 8322-7, 2012 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-22556266

RESUMEN

Cross-talk between plant cells and their surroundings requires tight regulation of information exchange at the plasma membrane (PM), which involves dynamic adjustments of PM protein localization and turnover to modulate signal perception and solute transport at the interface between cells and their surroundings. In animals and fungi, turnover of PM proteins is controlled by reversible ubiquitylation, which signals endocytosis and delivery to the cell's lytic compartment, and there is emerging evidence for related mechanisms in plants. Here, we describe the fate of Arabidopsis PIN2 protein, required for directional cellular efflux of the phytohormone auxin, and identify cis- and trans-acting mediators of PIN2 ubiquitylation. We demonstrate that ubiquitin acts as a principal signal for PM protein endocytosis in plants and reveal dynamic adjustments in PIN2 ubiquitylation coinciding with variations in vacuolar targeting and proteolytic turnover. We show that control of PIN2 proteolytic turnover via its ubiquitylation status is of significant importance for auxin distribution in root meristems and for environmentally controlled adaptations of root growth. Moreover, we provide experimental evidence indicating that PIN2 vacuolar sorting depends on modification specifically by lysine(63)-linked ubiquitin chains. Collectively, our results establish lysine(63)-linked PM cargo ubiquitylation as a regulator of polar auxin transport and adaptive growth responses in higher plants.


Asunto(s)
Adaptación Fisiológica/fisiología , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/metabolismo , Ubiquitinación/fisiología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Endocitosis/fisiología , Genotipo , Gravitropismo/fisiología , Lisina/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Vacuolas/metabolismo
11.
J Exp Bot ; 65(4): 1217-27, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24574485

RESUMEN

RNA-directed DNA methylation (RdDM) is essential for de novo DNA methylation in higher plants, and recent reports established novel elements of this silencing pathway in the model organism Arabidopsis thaliana. Involved in de novo DNA methylation 2 (IDN2) and the closely related factor of DNA methylation (FDM) are members of a plant-specific family of dsRNA-binding proteins characterized by conserved XH/XS domains and implicated in the regulation of RdDM at chromatin targets. Genetic analyses have suggested redundant as well as non-overlapping activities for different members of the gene family. However, detailed insights into the function of XH/XS-domain proteins are still elusive. By the generation and analysis of higher-order mutant combinations affected in IDN2 and further members of the gene family, we have provided additional evidence for their redundant activity. Distinct roles for members of the XH/XS-domain gene family were indicated by differences in their expression and subcellular localization. Fluorescent protein-tagged FDM genes were expressed either in nuclei or in the cytoplasm, suggestive of activities of XH/XS-domain proteins in association with chromatin as well as outside the nuclear compartment. In addition, we observed altered location of a functional FDM1-VENUS reporter from the nucleus into the cytoplasm under conditions when availability of further FDM proteins was limited. This is suggestive of a mechanism by which redistribution of XH/XS-domain proteins could compensate for the loss of closely related proteins.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Unión al ARN/genética , Alelos , Arabidopsis/citología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Metilación de ADN , Silenciador del Gen , Genes Reporteros , Meristema/citología , Meristema/genética , Meristema/metabolismo , Familia de Multigenes , Mutación , Hojas de la Planta/citología , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Estructura Terciaria de Proteína , Transporte de Proteínas , ARN Interferente Pequeño , Proteínas de Unión al ARN/metabolismo , Plantones/citología , Plantones/genética , Plantones/metabolismo , Especificidad de la Especie
12.
Nat Cell Biol ; 8(3): 249-56, 2006 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-16489343

RESUMEN

Root gravitropism describes the orientation of root growth along the gravity vector and is mediated by differential cell elongation in the root meristem. This response requires the coordinated, asymmetric distribution of the phytohormone auxin within the root meristem, and depends on the concerted activities of PIN proteins and AUX1 - members of the auxin transport pathway. Here, we show that intracellular trafficking and proteasome activity combine to control PIN2 degradation during root gravitropism. Following gravi-stimulation, proteasome-dependent variations in PIN2 localization and degradation at the upper and lower sides of the root result in asymmetric distribution of PIN2. Ubiquitination of PIN2 occurs in a proteasome-dependent manner, indicating that the proteasome is involved in the control of PIN2 turnover. Stabilization of PIN2 affects its abundance and distribution, and leads to defects in auxin distribution and gravitropic responses. We describe the effects of auxin on PIN2 localization and protein levels, indicating that redistribution of auxin during the gravitropic response may be involved in the regulation of PIN2 protein.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Gravitropismo , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/fisiología , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Endosomas/metabolismo , Hidrólisis , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Meristema/fisiología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Regiones Promotoras Genéticas , Complejo de la Endopetidasa Proteasomal/metabolismo , Transporte de Proteínas
13.
Proc Natl Acad Sci U S A ; 107(22): 10308-13, 2010 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-20479223

RESUMEN

Plant development is highly adaptable and controlled by a combination of various regulatory circuits that integrate internal and environmental cues. The phytohormone auxin mediates such growth responses, acting as a dynamic signal in the control of morphogenesis via coordinating the interplay between cell cycle progression and cell differentiation. Mutants in the chromatin-remodeling component PROPORZ1 (PRZ1; also known as AtADA2b) are impaired in auxin effects on morphogenesis, suggestive of an involvement of PRZ1-dependent control of chromatin architecture in the determination of hormone responses. Here we demonstrate that PRZ1 is required for accurate histone acetylation at auxin-controlled loci. Specifically, PRZ1 is involved in the modulation of histone modifications and corresponding adjustments in gene expression of Arabidopsis KIP RELATED PROTEIN (KRP) CDK inhibitor genes in response to auxin. Deregulated KRP expression in KRP silencer lines phenocopies prz1 hyperproliferative growth phenotypes, whereas in a KRP overexpression background some mutant phenotypes are suppressed. Collectively, our findings support a model in which translation of positional signals into developmental cues involves adjustments in chromatin modifications that orchestrate auxin effects on cell proliferation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Histonas/metabolismo , Ácidos Indolacéticos/metabolismo , Factores de Transcripción/metabolismo , Acetilación , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Secuencia de Bases , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/genética , Proteínas Inhibidoras de las Quinasas Dependientes de la Ciclina/metabolismo , Cartilla de ADN/genética , ADN de Plantas/genética , Regulación de la Expresión Génica de las Plantas/genética , Genes de Plantas , Histonas/química , Ácidos Indolacéticos/farmacología , Modelos Biológicos , Datos de Secuencia Molecular , Mutación , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Plantas Modificadas Genéticamente , Homología de Secuencia de Ácido Nucleico , Factores de Transcripción/genética
14.
Proc Natl Acad Sci U S A ; 107(6): 2705-10, 2010 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-20133796

RESUMEN

Like animals, the mature plant body develops via successive sets of instructions that determine cell fate, patterning, and organogenesis. In the coordination of various developmental programs, several plant hormones play decisive roles, among which auxin is the best-documented hormonal signal. Despite the broad range of processes influenced by auxin, how such a single signaling molecule can be translated into a multitude of distinct responses remains unclear. In Arabidopsis thaliana, lateral root development is a classic example of a developmental process that is controlled by auxin at multiple stages. Therefore, we used lateral root formation as a model system to gain insight into the multifunctionality of auxin. We were able to demonstrate the complementary and sequential action of two discrete auxin response modules, the previously described Solitary Root/indole-3-Acetic Acid (IAA)14-Auxin Response Factor (ARF)7-ARF19-dependent lateral root initiation module and the successive Bodenlos/IAA12-Monopteros/ARF5-dependent module, both of which are required for proper organogenesis. The genetic framework in which two successive auxin response modules control early steps of a developmental process adds an extra dimension to the complexity of auxin's action.


Asunto(s)
Arabidopsis/efectos de los fármacos , Ácidos Indolacéticos/farmacología , Raíces de Plantas/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Ciclinas/genética , Factores de Transcripción E2F/genética , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Morfogénesis , Reguladores del Crecimiento de las Plantas/farmacología , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Plantas Modificadas Genéticamente , Proteínas Serina-Treonina Quinasas , Receptores de Superficie Celular/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
15.
J Integr Plant Biol ; 55(9): 809-23, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23981390

RESUMEN

Being sessile organisms, plants evolved an unparalleled plasticity in their post-embryonic development, allowing them to adapt and fine-tune their vital parameters to an ever-changing environment. Crosstalk between plants and their environment requires tight regulation of information exchange at the plasma membrane (PM). Plasma membrane proteins mediate such communication, by sensing variations in nutrient availability, external cues as well as by controlled solute transport across the membrane border. Localization and steady-state levels are essential for PM protein function and ongoing research identified cis- and trans-acting determinants, involved in control of plant PM protein localization and turnover. In this overview, we summarize recent progress in our understanding of plant PM protein sorting and degradation via ubiquitylation, a post-translational and reversible modification of proteins. We highlight characterized components of the machinery involved in sorting of ubiquitylated PM proteins and discuss consequences of protein ubiquitylation on fate of selected PM proteins. Specifically, we focus on the role of ubiquitylation and PM protein degradation in the regulation of polar auxin transport (PAT). We combine this regulatory circuit with further aspects of PM protein sorting control, to address the interplay of events that might control PAT and polarized growth in higher plants.


Asunto(s)
Membrana Celular/metabolismo , Proteínas de la Membrana/metabolismo , Desarrollo de la Planta , Proteolisis , Ubiquitinación , Endocitosis
16.
Biochim Biophys Acta ; 1809(8): 459-68, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21515434

RESUMEN

Interest in transgenerational epigenetic inheritance has intensified with the boosting of knowledge on epigenetic mechanisms regulating gene expression during development and in response to internal and external signals such as biotic and abiotic stresses. Starting with an historical background of scantily documented anecdotes and their consequences, we recapitulate the information gathered during the last 60 years on naturally occurring and induced epialleles and paramutations in plants. We present the major players of epigenetic regulation and their importance in controlling stress responses. The effect of diverse stressors on the epigenetic status and its transgenerational inheritance is summarized from a mechanistic viewpoint. The consequences of transgenerational epigenetic inheritance are presented, focusing on the knowledge about its stability, and in relation to genetically fixed mutations, recombination, and genomic rearrangement. We conclude with an outlook on the importance of transgenerational inheritance for adaptation to changing environments and for practical applications. This article is part of a Special Issue entitled "Epigenetic control of cellular and developmental processes in plants".


Asunto(s)
Epigénesis Genética , Plantas/genética , Aclimatación/genética , Adaptación Fisiológica/genética , Metilación de ADN , Epigenómica/historia , Genoma de Planta , Histonas/genética , Histonas/metabolismo , Historia del Siglo XX , Historia del Siglo XXI , Mutación , Desarrollo de la Planta , Plantas/metabolismo , Estrés Fisiológico
17.
Mol Syst Biol ; 7: 540, 2011 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-22027551

RESUMEN

Cell polarity reflected by asymmetric distribution of proteins at the plasma membrane is a fundamental feature of unicellular and multicellular organisms. It remains conceptually unclear how cell polarity is kept in cell wall-encapsulated plant cells. We have used super-resolution and semi-quantitative live-cell imaging in combination with pharmacological, genetic, and computational approaches to reveal insights into the mechanism of cell polarity maintenance in Arabidopsis thaliana. We show that polar-competent PIN transporters for the phytohormone auxin are delivered to the center of polar domains by super-polar recycling. Within the plasma membrane, PINs are recruited into non-mobile membrane clusters and their lateral diffusion is dramatically reduced, which ensures longer polar retention. At the circumventing edges of the polar domain, spatially defined internalization of escaped cargos occurs by clathrin-dependent endocytosis. Computer simulations confirm that the combination of these processes provides a robust mechanism for polarity maintenance in plant cells. Moreover, our study suggests that the regulation of lateral diffusion and spatially defined endocytosis, but not super-polar exocytosis have primary importance for PIN polarity maintenance.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Arabidopsis/fisiología , Polaridad Celular , Endocitosis , Ácidos Indolacéticos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Pared Celular/metabolismo , Clatrina/metabolismo , Simulación por Computador , Difusión , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas/metabolismo , Transporte de Proteínas
18.
Nat Commun ; 13(1): 5147, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36050482

RESUMEN

Directionality in the intercellular transport of the plant hormone auxin is determined by polar plasma membrane localization of PIN-FORMED (PIN) auxin transport proteins. However, apart from PIN phosphorylation at conserved motifs, no further determinants explicitly controlling polar PIN sorting decisions have been identified. Here we present Arabidopsis WAVY GROWTH 3 (WAV3) and closely related RING-finger E3 ubiquitin ligases, whose loss-of-function mutants show a striking apical-to-basal polarity switch in PIN2 localization in root meristem cells. WAV3 E3 ligases function as essential determinants for PIN polarity, acting independently from PINOID/WAG-dependent PIN phosphorylation. They antagonize ectopic deposition of de novo synthesized PIN proteins already immediately following completion of cell division, presumably via preventing PIN sorting into basal, ARF GEF-mediated trafficking. Our findings reveal an involvement of E3 ligases in the selective targeting of apically localized PINs in higher plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/metabolismo , Transporte de Proteínas , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
19.
Proc Natl Acad Sci U S A ; 105(46): 17812-7, 2008 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-19004783

RESUMEN

All eukaryotic cells present at the cell surface a specific set of plasma membrane proteins that modulate responses to internal and external cues and whose activity is also regulated by protein degradation. We characterized the lytic vacuole-dependent degradation of membrane proteins in Arabidopsis thaliana by means of in vivo visualization of vacuolar targeting combined with quantitative protein analysis. We show that the vacuolar targeting pathway is used by multiple cargos including PIN-FORMED (PIN) efflux carriers for the phytohormone auxin. In vivo visualization of PIN2 vacuolar targeting revealed its differential degradation in response to environmental signals, such as gravity. In contrast to polar PIN delivery to the basal plasma membrane, which depends on the vesicle trafficking regulator ARF-GEF GNOM, PIN sorting to the lytic vacuolar pathway requires additional brefeldin A-sensitive ARF-GEF activity. Furthermore, we identified putative retromer components SORTING NEXIN1 (SNX1) and VACUOLAR PROTEIN SORTING29 (VPS29) as important factors in this pathway and propose that the retromer complex acts to retrieve PIN proteins from a late/pre-vacuolar compartment back to the recycling pathways. Our data suggest that ARF GEF- and retromer-dependent processes regulate PIN sorting to the vacuole in an antagonistic manner and illustrate instrumentalization of this mechanism for fine-tuning the auxin fluxes during gravitropic response.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Procesamiento Proteico-Postraduccional , Vacuolas/metabolismo , Factores de Ribosilacion-ADP/metabolismo , Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Membrana Celular/metabolismo , Gravitropismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Mutación/genética , Fenotipo , Fosfatidilinositoles/metabolismo , Transporte de Proteínas , Factores de Tiempo , Proteínas de Transporte Vesicular/metabolismo
20.
Mol Plant ; 14(1): 151-165, 2021 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-33186755

RESUMEN

The phytohormone auxin plays a central role in shaping plant growth and development. With decades of genetic and biochemical studies, numerous core molecular components and their networks, underlying auxin biosynthesis, transport, and signaling, have been identified. Notably, protein phosphorylation, catalyzed by kinases and oppositely hydrolyzed by phosphatases, has been emerging to be a crucial type of post-translational modification, regulating physiological and developmental auxin output at all levels. In this review, we comprehensively discuss earlier and recent advances in our understanding of genetics, biochemistry, and cell biology of the kinases and phosphatases participating in auxin action. We provide insights into the mechanisms by which reversible protein phosphorylation defines developmental auxin responses, discuss current challenges, and provide our perspectives on future directions involving the integration of the control of protein phosphorylation into the molecular auxin network.


Asunto(s)
Vías Biosintéticas , Ácidos Indolacéticos/metabolismo , Transducción de Señal , Transporte Biológico , Modelos Biológicos , Fosforilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA