Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Total Environ ; 833: 155236, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35427626

RESUMEN

Agrochemicals can adversely affect biodiversity, environment and human health, and commonly occur in mixtures with poorly characterized toxic mechanisms and health hazards. Here, we evaluated the individual and mixture toxicities of Roundup and chlorpyrifos in environmentally relevant concentrations to zebrafish using molecular and biochemical indices. Studied pesticides alone and in combination caused depletion of total antioxidant capacity and cellular thiols, overproduction of ROS, accumulation of oxidative lesions and elevated DNA damage in zebrafish liver. Notably, low concentration of Roundup induced a hormesis-like effect by stimulating the protective cellular mechanisms. Chlorpyrifos showed stronger prooxidant effects than Roundup and additionally caused nitrosative and carbonyl stress in zebrafish. At the organismal level, studied pesticides and their mixtures induced hepato- and neurotoxicity. The effects of the studied pesticides on biomarkers of apoptosis, endocrine disruption and immune disorders were generally weak and inconsistent. The multibiomarker assessment showed that chlorpyrifos is considerably more toxic than Roundup to zebrafish. The toxic effects of the pesticide mixtures were mostly driven by chlorpyrifos, with minimal or mitigating effects of Roundup addition. These findings elucidate the toxic mechanisms of common pesticides in a model vertebrate and demonstrate that health hazards of pesticide mixtures cannot be predicted from the effects of single pesticides.


Asunto(s)
Cloropirifos , Plaguicidas , Animales , Antioxidantes , Biomarcadores , Cloropirifos/toxicidad , Plaguicidas/toxicidad , Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA