Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Gen Virol ; 103(12)2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36748482

RESUMEN

Rotaviruses (RVs) are an important cause of acute gastroenteritis in young children. Recently, versatile plasmid-based reverse genetics systems were developed for several human RV genotypes; however, these systems have not been developed for all commonly circulating human RV genotypes. In this study, we established a reverse genetics system for G2P[4] human RV strain HN126. Nucleotide sequence analysis, including that of the terminal ends of the viral double-stranded RNA genome, revealed that HN126 possessed a DS-1-like genotype constellation. Eleven plasmids, each encoding 11 gene segments of the RV genome, and expression plasmids encoding vaccinia virus RNA capping enzyme (D1R and D12L), Nelson Bay orthoreovirus FAST, and NSP2 and NSP5 of HN126, were transfected into BHK-T7 cells, and recombinant strain HN126 was generated. Using HN126 or simian RV strain SA11 as backbone viruses, reassortant RVs carrying the outer and intermediate capsid proteins (VP4, VP7 and VP6) of HN126 and/or SA11 (in various combinations) were generated. Viral replication analysis of the single, double and triple reassortant viruses suggested that homologous combination of the VP4 and VP7 proteins contributed to efficient virus infectivity and interaction between other viral or cellular proteins. Further studies of reassortant viruses between simian and other human RV strains will contribute to developing an appropriate model for human RV research, as well as suitable backbone viruses for generation of recombinant vaccine candidates.


Asunto(s)
Genoma Viral , Rotavirus , Humanos , Genotipo , Filogenia , Virus Reordenados/genética , Genética Inversa , Rotavirus/genética
2.
Biochem Biophys Res Commun ; 534: 740-746, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33250174

RESUMEN

Recombinant viruses expressing fluorescent or luminescent reporter proteins are used to quantitate and visualize viral replication and transmission. Here, we used a split NanoLuc luciferase (NLuc) system comprising large LgBiT and small HiBiT peptide fragments to generate stable reporter rotaviruses (RVs). Reporter RVs expressing NSP1-HiBiT fusion protein were generated by placing an 11 amino acid HiBiT peptide tag at the C-terminus of the intact simian RV NSP1 open reading frame or truncated human RV NSP1 open reading frame. Virus-infected cell lysates exhibited NLuc activity that paralleled virus replication. The antiviral activity of neutralizing antibodies and antiviral reagents against the recombinant HiBiT reporter viruses were monitored by measuring reductions in NLuc expression. These findings demonstrate that the HiBiT reporter RV systems are powerful tools for studying the viral life cycle and pathogenesis, and a robust platform for developing novel antiviral drugs.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Genes Reporteros , Luciferasas/genética , Péptidos/genética , Rotavirus/genética , Animales , Antivirales/farmacología , Cricetinae , Humanos , Ratones , Microorganismos Modificados Genéticamente , Pruebas de Neutralización , Ribavirina/farmacología , Rotavirus/fisiología , Infecciones por Rotavirus/tratamiento farmacológico , Infecciones por Rotavirus/virología , Proteínas no Estructurales Virales/genética , Replicación Viral/genética
3.
J Virol ; 95(2)2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33087468

RESUMEN

Species A rotaviruses (RVs) are a leading cause of severe acute gastroenteritis in infants and children younger than 5 years. Currently available RV vaccines were adapted from wild-type RV strains by serial passage of cultured cells or by reassortment between human and animal RV strains. These traditional methods require large-scale screening and genotyping to obtain vaccine candidates. Reverse genetics is a tractable, rapid, and reproducible approach to generating recombinant RV vaccine candidates carrying any VP4 and VP7 genes that provide selected antigenicity. Here, we developed a vaccine platform by generating recombinant RVs carrying VP4 (P[4] and P[8]), VP7 (G1, G2, G3, G8, and G9), and/or VP6 genes cloned from human RV clinical samples using the simian RV SA11 strain (G3P[2]) as a backbone. Neutralization assays using monoclonal antibodies and murine antisera revealed that recombinant VP4 and VP7 monoreassortant viruses exhibited altered antigenicity. However, replication of VP4 monoreassortant viruses was severely impaired. Generation of recombinant RVs harboring a chimeric VP4 protein for SA11 and human RV gene components revealed that the VP8* fragment was responsible for efficient infectivity of recombinant RVs. Although this system must be improved because the yield of vaccine viruses directly affects vaccine manufacturing costs, reverse genetics requires less time than traditional methods and enables rapid production of safe and effective vaccine candidates.IMPORTANCE Although vaccines have reduced global RV-associated hospitalization and mortality over the past decade, the multisegmented genome of RVs allows reassortment of VP4 and VP7 genes from different RV species and strains. The evolutionary dynamics of novel RV genotypes and their constellations have led to great genomic and antigenic diversity. The reverse genetics system is a powerful tool for manipulating RV genes, thereby controlling viral antigenicity, growth capacity, and pathogenicity. Here, we generated recombinant simian RVs (strain SA11) carrying heterologous VP4 and VP7 genes cloned from clinical isolates and showed that VP4- or VP7-substituted chimeric viruses can be used for antigenic characterization of RV outer capsid proteins and as improved seed viruses for vaccine production.


Asunto(s)
Antígenos Virales/genética , Proteínas de la Cápside/genética , Vacunas contra Rotavirus/genética , Rotavirus/inmunología , Rotavirus/aislamiento & purificación , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Antígenos Virales/inmunología , Proteínas de la Cápside/inmunología , Reacciones Cruzadas , Genotipo , Humanos , Inmunogenicidad Vacunal , Ratones , Filogenia , Virus Reordenados/genética , Virus Reordenados/inmunología , Genética Inversa , Rotavirus/clasificación , Rotavirus/genética , Infecciones por Rotavirus/prevención & control , Infecciones por Rotavirus/virología , Vacunas contra Rotavirus/administración & dosificación , Vacunas contra Rotavirus/inmunología , Vacunas Sintéticas/administración & dosificación , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología
4.
Methods Mol Biol ; 2552: 283-294, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36346598

RESUMEN

Antibody and TCR modeling are becoming important as more and more sequence data becomes available to the public. One of the pressing questions now is how to use such data to understand adaptive immune responses to disease. Infectious disease is of particular interest because the antigens driving such responses are often known to some extent. Here, we describe tips for gathering data and cleaning it for use in downstream analysis. We present a method for high-throughput structural modeling of antibodies or TCRs using Repertoire Builder and its extensions. AbAdapt is an extension of Repertoire Builder for antibody-antigen docking from antibody and antigen sequences. ImmuneScape is a corresponding extension for TCR-pMHC 3D modeling. Together, these pipelines can help researchers to understand immune responses to infection from a structural point of view.


Asunto(s)
Antígenos , Receptores de Antígenos de Linfocitos T , Inmunidad
5.
Viruses ; 15(12)2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-38140662

RESUMEN

The entry of SARS-CoV-2 into host cells is mediated by the interaction between the spike receptor-binding domain (RBD) and host angiotensin-converting enzyme 2 (ACE2). Certain human antibodies, which target the spike N-terminal domain (NTD) at a distant epitope from the host cell binding surface, have been found to augment ACE2 binding and enhance SARS-CoV-2 infection. Notably, these antibodies exert their effect independently of the antibody fragment crystallizable (Fc) region, distinguishing their mode of action from previously described antibody-dependent infection-enhancing (ADE) mechanisms. Building upon previous hypotheses and experimental evidence, we propose that these NTD-targeting infection-enhancing antibodies (NIEAs) achieve their effect through the crosslinking of neighboring spike proteins. In this study, we present refined structural models of NIEA fragment antigen-binding region (Fab)-NTD complexes, supported by molecular dynamics simulations and hydrogen-deuterium exchange mass spectrometry (HDX-MS). Furthermore, we provide direct evidence confirming the crosslinking of spike NTDs by NIEAs. Collectively, our findings advance our understanding of the molecular mechanisms underlying NIEAs and their impact on SARS-CoV-2 infection.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Enzima Convertidora de Angiotensina 2/metabolismo , Glicoproteína de la Espiga del Coronavirus , Unión Proteica , Anticuerpos Antivirales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA