Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Exp Eye Res ; 238: 109741, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38056552

RESUMEN

A variety of techniques exist to investigate retinal and choroidal vascular changes in experimental mouse models of human ocular diseases. While all have specific advantages, a method for evaluating the choroidal vasculature in pigmented mouse eyes has been more challenging especially for whole mount visualization and morphometric analysis. Here we report a simple, reliable technique involving bleaching pigment prior to immunostaining the vasculature in whole mounts of pigmented mouse choroids. Eyes from healthy adult pigmented C57BL/6J mice were used to establish the methodology. The retina and anterior segment were separated from the choroid. The choroid with retinal pigment epithelial cells (RPE) and sclera was soaked in 1% ethylenediaminetetraacetic acid (EDTA) to remove the RPE. Tissues were fixed in 2% paraformaldehyde (PFA) in phosphate-buffered saline (PBS). Choroids were subjected to melanin bleaching with 10% hydrogen peroxide (H2O2) at 55 °C for 90 min, washed in PBS and then immunostained with anti-podocalyxin antibody to label vascular endothelium followed by Cy3-AffiniPure donkey anti-goat IgG at 4 °C overnight. Images of immunostained bleached choroids were captured using a Zeiss 710 confocal microscope. In addition to control eyes, this method was used to analyze the choroids from subretinal sodium iodate (NaIO3) RPE atrophy and laser-induced choroidal neovascularization (CNV) mouse models. The H2O2 pretreatment effectively bleached the melanin, resulting in a transparent choroid. Immunolabeling with podocalyxin antibody following bleaching provided excellent visualization of choroidal vasculature in the flat perspective. In control choroids, the choriocapillaris (CC) displayed different anatomical patterns in peripapillary (PP), mid peripheral (MP) and far peripheral (FP) choroid. Morphometric analysis of the vascular area (VA) revealed that the CC was most dense in the PP region (87.4 ± 4.3% VA) and least dense in FP (79.9 ± 6.7% VA). CC diameters also varied depending on location from 11.4 ± 1.97 mm in PP to 15.1 ± 3.15 mm in FP. In the NaIO3-injected eyes, CC density was significantly reduced in the RPE atrophic regions (50.7 ± 5.8% VA in PP and 45.8 ± 6.17% VA in MP) compared to the far peripheral non-atrophic regions (82.8 ± 3.8% VA). CC diameters were significantly reduced in atrophic regions (6.35 ± 1.02 mm in PP and 6.5 ± 1.2 mm in MP) compared to non-atrophic regions (14.16 ± 2.12 mm). In the laser-induced CNV model, CNV area was 0.26 ± 0.09 mm2 and luminal diameters of CNV vessels were 4.7 ± 0.9 mm. Immunostaining on bleached choroids with anti-podocalyxin antibody provides a simple and reliable tool for visualizing normal and pathologic choroidal vasculature in pigmented mouse eyes for quantitative morphometric analysis. This method will be beneficial for examining and evaluating the effects of various treatment modalities on the choroidal vasculature in mouse models of ocular diseases such as age-related macular degeneration, and degenerative genetic diseases.


Asunto(s)
Neovascularización Coroidal , Peróxido de Hidrógeno , Adulto , Humanos , Animales , Ratones , Melaninas , Ratones Endogámicos C57BL , Coroides/irrigación sanguínea , Retina/patología , Neovascularización Coroidal/patología
2.
Exp Eye Res ; 203: 108391, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33307075

RESUMEN

Oxidative stress, inflammation and neovascularization are the key pathological events that are implicated in human age-related macular degeneration (AMD). There are a limited number of animal models available for evaluating and developing new therapies. Most models represent late exudative or neovascular AMD (nAMD) but there is a relative paucity of models that mimic early events in AMD. The purpose of this study is to characterize the evolution of oxidative stress, inflammation, retinal degeneration and neovascularization in a rat model of AMD, created by subretinal injection of human lipid hydroperoxide (HpODE) that found in the sub-macular region in aged and AMD patients. Subretinal HpODE induced retinal pigment epithelium (RPE) and retinal degeneration resulting in loss of RPE cells, photoreceptors and retinal thinning. RPE degeneration and atrophy were detected by day 5, followed by neural tissue degeneration at day 12 with robust TUNEL positive cells. Western blot analysis confirmed an increase in pro-apoptotic Bak protein at day 12 in retinal tissues. Oxidative damage biomarkers (4-hydroxynonenal, malondialdehyde, 8-hydroxy-2'-deoxyguanosine, and nitrotyrosine) increased in retinal tissue from days 5-12. Müller glial activation was observed in the HpODE injected area at day 5 followed by its remodeling and migration in the outer retina by day 20. RT-qPCR analysis further indicated upregulation of pro-inflammatory genes (TNF-α, IL-1ß and IL-6) both in retinal and RPE/choroidal tissue as early as day 2 and persisted until day 12. Upregulation of oxidative stress markers such as NADPH oxidase (NOX and DOUX family) was detected early in retinal tissue by day 2 followed by its upregulation in choroidal tissue at day 5. Neovascularization was demonstrated from day 12 to day 20 post HpODE injection in choroidal tissue. The results from this study indicate that subretinal HpODE induces advanced AMD phenotypes comprising many aspects of both dry/early and late) and neovascular/late AMD as observed in humans. Within 3 weeks via oxidative damage, upregulation of reactive oxygen species and pro-inflammatory genes, pro-apoptotic Bak and pro-angiogenic VEGF upregulation occurs leading to CNV formation. This experimental model of subretinal HpODE is an appropriate model for the study of AMD and provides an important platform for translational and basic research in developing new therapies particularly for early/dry AMD where currently no viable therapies are available.


Asunto(s)
Neovascularización Coroidal/etiología , Atrofia Geográfica/inducido químicamente , Inflamación/etiología , Peróxidos Lipídicos/toxicidad , Estrés Oxidativo/efectos de los fármacos , Neovascularización Retiniana/etiología , Degeneración Macular Húmeda/inducido químicamente , Animales , Biomarcadores/metabolismo , Western Blotting , Neovascularización Coroidal/metabolismo , Neovascularización Coroidal/patología , Modelos Animales de Enfermedad , Atrofia Geográfica/patología , Etiquetado Corte-Fin in Situ , Inflamación/metabolismo , Inflamación/patología , Microscopía Confocal , Células Fotorreceptoras de Vertebrados/efectos de los fármacos , Células Fotorreceptoras de Vertebrados/patología , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Neovascularización Retiniana/metabolismo , Neovascularización Retiniana/patología , Epitelio Pigmentado de la Retina/efectos de los fármacos , Epitelio Pigmentado de la Retina/patología , Degeneración Macular Húmeda/patología
3.
FASEB J ; 34(8): 10117-10131, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32525594

RESUMEN

Mast cells (MCs) are the initial responders of innate immunity and their degranulation contribute to various etiologies. While the abundance of MCs in the choroid implies their fundamental importance in the eye, little is known about the significance of MCs and their degranulation in choroid. The cause of geographic atrophy (GA), a progressive dry form of age-related macular degeneration is elusive and there is currently no therapy for this blinding disorder. Here we demonstrate in both human GA and a rat model for GA, that MC degranulation and MC-derived tryptase are central to disease progression. Retinal pigment epithelium degeneration followed by retinal and choroidal thinning, characteristic phenotypes of GA, were driven by continuous choroidal MC stimulation and activation in a slow release fashion in the rat. Genetic manipulation of MCs, pharmacological intervention targeting MC degranulation with ketotifen fumarate or inhibition of MC-derived tryptase with APC 366 prevented all of GA-like phenotypes following MC degranulation in the rat model. Our results demonstrate the fundamental role of choroidal MC involvement in GA disease etiology, and will provide new opportunities for understanding GA pathology and identifying novel therapies targeting MCs.


Asunto(s)
Atrofia Geográfica/patología , Mastocitos/patología , Animales , Línea Celular , Coroides/metabolismo , Coroides/patología , Modelos Animales de Enfermedad , Atrofia Geográfica/metabolismo , Humanos , Degeneración Macular/metabolismo , Degeneración Macular/patología , Masculino , Mastocitos/metabolismo , Ratas , Ratas Sprague-Dawley , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología , Triptasas/metabolismo
4.
Adv Exp Med Biol ; 1256: 89-119, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33847999

RESUMEN

A healthy choroidal vasculature is necessary to support the retinal pigment epithelium (RPE) and photoreceptors, because there is a mutualistic symbiotic relationship between the components of the photoreceptor/retinal pigment epithelium (RPE)/Bruch's membrane (BrMb)/choriocapillaris (CC) complex. This relationship is compromised in age-related macular degeneration (AMD) by the dysfunction or death of the choroidal vasculature. This chapter will provide a basic description of the human Bruch's membrane and choroidal anatomy and physiology and how they change in AMD.The choriocapillaris is the lobular, fenestrated capillary system of choroid. It lies immediately posterior to the pentalaminar Bruch's membrane (BrMb). The blood supply for this system is the intermediate blood vessels of Sattler's layer and the large blood vessels in Haller's layer.In geographic atrophy (GA), an advanced form of dry AMD, large confluent drusen form on BrMb, and hyperpigmentation (presumably dysfunction in RPE) appears to be the initial insult. The resorption of these drusen and loss of RPE (hypopigmentation) can be predictive for progression of GA. The death and dysfunction of CC and photoreceptors appear to be secondary events to loss in RPE. The loss of choroidal vasculature may be the initial insult in neovascular AMD (nAMD). We have observed a loss of CC with an intact RPE monolayer in nAMD, by making RPE hypoxic. These hypoxic cells then produce angiogenic substances like vascular endothelial growth factor (VEGF), which stimulate growth of new vessels from CC, resulting in choroidal neovascularization (CNV). Reduction in blood supply to the CC, often stenosis of intermediate and large blood vessels, is associated with CC loss.The polymorphisms in the complement system components are associated with AMD. In addition, the environment of the CC, basement membrane and intercapillary septa, is a proinflammatory milieu with accumulation of proinflammatory molecules like CRP and complement components during AMD. In this toxic milieu, CC die or become dysfunctional even early in AMD. The loss of CC might be a stimulus for drusen formation since the disposal system for retinal debris and exocytosed material from RPE would be limited. Ultimately, the photoreceptors die of lack of nutrients, leakage of serum components from the neovascularization, and scar formation.Therefore, the mutualistic symbiotic relationship of the photoreceptor/RPE/BrMb/CC complex is lost in both forms of AMD. Loss of this functionally integrated relationship results in death and dysfunction of all of the components in the complex.


Asunto(s)
Lámina Basal de la Coroides , Degeneración Macular Húmeda , Inhibidores de la Angiogénesis , Coroides , Humanos , Factor A de Crecimiento Endotelial Vascular , Agudeza Visual
5.
Exp Eye Res ; 192: 107939, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31987759

RESUMEN

Loss of choriocapillaris (CC) in advanced age-related macular degeneration (AMD) is well documented but changes in early AMD have not been quantified. Postmortem eyes from donors with clinically documented early AMD were examined in choroidal whole mounts to determine the area, pattern, and severity of CC loss. Choroids from postmortem human eyes without AMD (n = 7; mean age = 86.1) and from eyes with a Grade 2 clinical classification of early AMD (n = 7; mean age = 87) were immunolabeled with Ulex europaeus agglutinin (UEA) lectin-FITC to stain blood vessels. Whole mounts were imaged using confocal microscopy and image analysis was performed to determine the area of vascular changes and density of vasculature (percent vascular area, %VA). All areas evaluated had a complete RPE monolayer upon gross examination. In age-matched control eyes, the CC had broad lumens and a homogenous pattern of freely interconnecting capillaries. The mean %VA ± standard deviation in submacula of control subjects was 78.1 ± 3.25%. In eyes with early AMD, there was a significant decrease in mean %VA to 60.1 ± 10.4% (p < 0.0001). The paramacular %VA was not significantly different in eyes with or without AMD. The area of submacular choroid affected by CC dropout was 0.04 ± 0.09 mm2 in control eyes. In eyes with early AMD, the mean area affected by CC dropout was significantly increased (10.4 ± 6.1 mm2; p < 0.001). In some cases, incipient neovascular buds were observed at the border of regions with CC dropout in early AMD choroids. In conclusion, UEA lectin-labeled choroidal whole mounts from donors with clinically documented early AMD has provided a unique opportunity to examine regional changes in vascular pathology associated with choriocapillaris. The study demonstrated attenuation of submacular CC in early AMD subjects but no vascular pathology was observed outside the submacular region. While the affected area in some eyes was quite extensive histologically, these changes may not be detectable clinically using standard in vivo imaging.


Asunto(s)
Coroides/irrigación sanguínea , Neovascularización Coroidal/patología , Arterias Ciliares/patología , Degeneración Macular/patología , Anciano , Anciano de 80 o más Años , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Femenino , Humanos , Inmunohistoquímica , Masculino , Microscopía Confocal , Lectinas de Plantas/metabolismo , Drusas Retinianas/patología , Coloración y Etiquetado , Donantes de Tejidos , Agudeza Visual/fisiología
6.
J Pathol ; 241(5): 583-588, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28026019

RESUMEN

Age-related macular degeneration (AMD) is a complex and progressive degenerative eye disease resulting in severe loss of central vision. Recent evidence indicates that immune system dysregulation could contribute to the development of AMD. We hypothesize that defective lysosome-mediated clearance causes accumulation of waste products in the retinal pigmented epithelium (RPE), activating the immune system and leading to retinal tissue injury and AMD. We have generated unique genetically engineered mice in which lysosome-mediated clearance (both by phagocytosis and autophagy) in RPE cells is compromised, causing the development of features of early AMD. Our recent data indicate a link between lipocalin-2 (LCN-2) and the inflammatory responses induced in this mouse model. We show that nuclear factor-κB (NF-κB) and STAT-1 may function as a complex in our animal model system, together controlling the upregulation of LCN-2 expression in the retina and stimulating an inflammatory response. This study revealed increased infiltration of LCN-2-positive neutrophils in the choroid and retina of early AMD patients as compared with age-matched controls. Our results demonstrate that, both in our animal model and in human AMD, the AKT2-NF-κB-LCN-2 signalling axis is involved in activating the inflammatory response, making this pathway a potential target for AMD treatment. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Lipocalina 2/genética , Lisosomas/inmunología , Degeneración Macular/genética , FN-kappa B/genética , Proteínas Proto-Oncogénicas c-akt/genética , Transducción de Señal , Factores de Edad , Animales , Autofagia , Coroides/inmunología , Coroides/metabolismo , Modelos Animales de Enfermedad , Humanos , Inflamación , Lipocalina 2/metabolismo , Lisosomas/metabolismo , Degeneración Macular/inmunología , Degeneración Macular/patología , Ratones , FN-kappa B/metabolismo , Neutrófilos/inmunología , Fagocitosis , Proteínas Proto-Oncogénicas c-akt/metabolismo , Retina/inmunología , Retina/lesiones , Retina/metabolismo , Epitelio Pigmentado de la Retina/inmunología , Epitelio Pigmentado de la Retina/metabolismo , Regulación hacia Arriba
7.
Retina ; 38(7): 1289-1300, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29059100

RESUMEN

PURPOSE: To present a postprocessing approach in optical coherence tomography angiography (OCTA) to facilitate the visualization and interpretation of lesions in age-related macular degeneration with coexisting atrophy and choroidal neovascularization (CNV). METHODS: This retrospective study included 32 eyes of 26 patients with atrophy and treated CNV and 8 eyes with treatment-naive geographic atrophy. En face optical coherence tomography slabs highlighting atrophy were pseudocolored and merged with the corresponding OCTA. Cross-sectional optical coherence tomography and postprocessed OCTA were analyzed to identify CNV and normal choroidal vessels in relationship to the atrophy. We correlate the OCTA findings with those in a donor eye with treatment-naive geographic atrophy studied with transmission electronic microscopy. RESULTS: Medium-sized choroidal vessels were displaced anteriorly in areas of atrophy in all 40 eyes (100%), visualized in the choriocapillaris slab in all eyes, and in the outer retinal slab in 30 of 40 eyes (75.0%). Cross-sectional OCTA was used to confirm the presence of CNV. Postprocessing successfully highlighted the CNV and distinguished it from choroidal vessels in atrophy. Donor eye transmission electronic microscopy confirmed the anterior displacement of medium-sized choroidal vessels in geographic atrophy. CONCLUSION: The anterior displacement of larger choroidal vessels in atrophy requires clinician vigilance to avoid misinterpreting these vessels as CNV on en face OCTA. Our proposed postprocessing approach offers a potential solution to facilitate the interpretation of en face OCTA in these cases. In the absence of other tools, clinicians are encouraged to rely on the location of flow relative to Bruch membrane on cross-sectional OCTA flow images.


Asunto(s)
Coroides/irrigación sanguínea , Neovascularización Coroidal/diagnóstico , Angiografía con Fluoresceína/métodos , Tomografía de Coherencia Óptica/métodos , Degeneración Macular Húmeda/patología , Anciano , Anciano de 80 o más Años , Atrofia/diagnóstico , Lámina Basal de la Coroides/ultraestructura , Coroides/ultraestructura , Diagnóstico Diferencial , Femenino , Estudios de Seguimiento , Fondo de Ojo , Humanos , Masculino , Microscopía Electrónica de Transmisión , Estudios Retrospectivos
8.
Proc Natl Acad Sci U S A ; 112(23): E3030-9, 2015 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-26039997

RESUMEN

Diabetic eye disease is the most common cause of severe vision loss in the working-age population in the developed world, and proliferative diabetic retinopathy (PDR) is its most vision-threatening sequela. In PDR, retinal ischemia leads to the up-regulation of angiogenic factors that promote neovascularization. Therapies targeting vascular endothelial growth factor (VEGF) delay the development of neovascularization in some, but not all, diabetic patients, implicating additional factor(s) in PDR pathogenesis. Here we demonstrate that the angiogenic potential of aqueous fluid from PDR patients is independent of VEGF concentration, providing an opportunity to evaluate the contribution of other angiogenic factor(s) to PDR development. We identify angiopoietin-like 4 (ANGPTL4) as a potent angiogenic factor whose expression is up-regulated in hypoxic retinal Müller cells in vitro and the ischemic retina in vivo. Expression of ANGPTL4 was increased in the aqueous and vitreous of PDR patients, independent of VEGF levels, correlated with the presence of diabetic eye disease, and localized to areas of retinal neovascularization. Inhibition of ANGPTL4 expression reduced the angiogenic potential of hypoxic Müller cells; this effect was additive with inhibition of VEGF expression. An ANGPTL4 neutralizing antibody inhibited the angiogenic effect of aqueous fluid from PDR patients, including samples from patients with low VEGF levels or receiving anti-VEGF therapy. Collectively, our results suggest that targeting both ANGPTL4 and VEGF may be necessary for effective treatment or prevention of PDR and provide the foundation for studies evaluating aqueous ANGPTL4 as a biomarker to help guide individualized therapy for diabetic eye disease.


Asunto(s)
Angiopoyetinas/fisiología , Retinopatía Diabética/tratamiento farmacológico , Adulto , Anciano , Anciano de 80 o más Años , Angiopoyetinas/metabolismo , Retinopatía Diabética/metabolismo , Ojo/irrigación sanguínea , Ojo/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neovascularización Patológica , Factor A de Crecimiento Endotelial Vascular/sangre
9.
Proc Natl Acad Sci U S A ; 112(35): 10950-5, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26269569

RESUMEN

Age-related macular degeneration (AMD) is associated with dysfunction and death of retinal pigment epithelial (RPE) cells. Cell-based approaches using RPE-like cells derived from human pluripotent stem cells (hPSCs) are being developed for AMD treatment. However, most efficient RPE differentiation protocols rely on complex, stepwise treatments and addition of growth factors, whereas small-molecule-only approaches developed to date display reduced yields. To identify new compounds that promote RPE differentiation, we developed and performed a high-throughput quantitative PCR screen complemented by a novel orthogonal human induced pluripotent stem cell (hiPSC)-based RPE reporter assay. Chetomin, an inhibitor of hypoxia-inducible factors, was found to strongly increase RPE differentiation; combination with nicotinamide resulted in conversion of over one-half of the differentiating cells into RPE. Single passage of the whole culture yielded a highly pure hPSC-RPE cell population that displayed many of the morphological, molecular, and functional characteristics of native RPE.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Células Madre Pluripotentes/efectos de los fármacos , Epitelio Pigmentado de la Retina/citología , Ensayos Analíticos de Alto Rendimiento , Humanos , Células Madre Pluripotentes/citología , Reacción en Cadena de la Polimerasa
10.
Exp Eye Res ; 150: 44-61, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26220834

RESUMEN

During analysis of glia in wholemount aged human retinas, frequent projections onto the vitreal surface of the inner limiting membrane (ILM) were noted. The present study characterized these preretinal glial structures. The amount of glial cells on the vitreal side of the ILM was compared between eyes with age-related macular degeneration (AMD) and age-matched control eyes. Retinal wholemounts were stained for markers of retinal astrocytes and activated Müller cells (glial fibrillary acidic protein, GFAP), Müller cells (vimentin, glutamine synthetase) and microglia/hyalocytes (IBA-1). Retinal vessels were labeled with UEA lectin. Images were collected using a Zeiss LSM 710 confocal microscope. Retinas were then cryopreserved. Laminin labeling of cryosections determined the location of glial structures in relation to the ILM. All retinas investigated herein had varied amounts of preretinal glia. These glial structures were classified into three groups based on size: sprouts, blooms, and membranes. The simplest of the glial structures observed were focal sprouts of singular GFAP-positive cells or processes on the vitreal surface of the ILM. The intermediate structures observed, glial blooms, were created by multiple cells/processes exiting from a single point and extending along the vitreoretinal surface. The most extensive structures, glial membranes, consisted of compact networks of cells and processes. Preretinal glia were observed in all areas of the retina but they were most prominent over large vessels. While all glial blooms and membranes contained vimentin and GFAP-positive cells, these proteins did not always co-localize. Many areas had no preretinal GFAP but had numerous vimentin only glial sprouts. In double labeled glial sprouts, vimentin staining extended beyond that of GFAP. Hyalocytes and microglia were detected along with glial sprouts, blooms, and membranes. They did not, however, concentrate in the retina below these structures. Cross sectional analysis identified small breaks in the ILM above large retinal vessels through which glial cells exited the retina. Preretinal glial structures of varied sizes are a common occurrence in aged retinas and, in most cases, are subclinical. While all retinal glia are found in blooms, vimentin labeling suggests that Müller cells form the leading edge. All retinas investigated from eyes with active choroidal neovascularization (CNV) had extensive glial membranes on the vitreal surface of the ILM. Although these structures may be benign, they may exert traction on the retina as they spread along the vitreoretinal interface. In cases with CNV, glial cells in the vitreous could bind intravitreally injected anti-vascular endothelial growth factor. These preretinal glial structures indicate the remodeling of both astrocytes and Müller cells in aged retinas, in particular those with advanced AMD.


Asunto(s)
Envejecimiento , Degeneración Macular/patología , Neuroglía/patología , Retina/patología , Anciano , Anciano de 80 o más Años , Astrocitos/patología , Humanos , Inmunohistoquímica , Microscopía Confocal , Persona de Mediana Edad
11.
Exp Eye Res ; 144: 46-53, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26321509

RESUMEN

The retinal pigmented epithelium (RPE) is critically important to retinal homeostasis, in part due to its very active processes of phagocytosis and autophagy. Both of these processes depend upon the normal functioning of lysosomes, organelles which must fuse with (auto)phagosomes to deliver the hydrolases that effect degradation of cargo. It has become clear that signaling through mTOR complex 1 (mTORC1), is very important in the regulation of lysosomal function. This signaling pathway is becoming a target for therapeutic intervention in diseases, including age-related macular degeneration (AMD), where lysosomal function is defective. In addition, our laboratory has been studying animal models in which the gene (Cryba1) for ßA3/A1-crystallin is deficient. These animals exhibit impaired lysosomal clearance in the RPE and pathological signs that are similar to some of those seen in AMD patients. The data demonstrate that ßA3/A1-crystallin localizes to lysosomes in the RPE and that it is a binding partner of V-ATPase, the proton pump that acidifies the lysosomal lumen. This suggests that ßA3/A1-crystallin may also be a potential target for therapeutic intervention in AMD. In this review, we focus on effector molecules that impact the lysosomal-autophagic pathway in RPE cells.


Asunto(s)
Autofagia/fisiología , Lisosomas/fisiología , Epitelio Pigmentado de la Retina/metabolismo , Animales , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina , Complejos Multiproteicos/fisiología , Biogénesis de Organelos , Serina-Treonina Quinasas TOR/fisiología
12.
Proteomics ; 15(4): 836-40, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25407473

RESUMEN

The retina is a delicate tissue that detects light, converts photochemical energy into neural signals, and transmits the signals to the visual cortex of the brain. A detailed protein inventory of the proteome of the normal human eye may provide a foundation for new investigations into both the physiology of the retina and the pathophysiology of retinal diseases. To provide an inventory, proteins were extracted from five retinas of normal eyes and fractionated using SDS-PAGE. After in-gel digestion, peptides were analyzed in duplicate using LC-MS/MS on an Orbitrap Elite mass spectrometer. A total of 3436 nonredundant proteins were identified in the human retina, including 20 unambiguous protein isoforms, of which eight have not previously been demonstrated to exist at the protein level. The proteins identified in the retina included most of the enzymes involved in the visual cycle and retinoid metabolism. One hundred and fifty-eight proteins that have been associated with age-related macular degeneration were identified in the retina. The MS proteome database of the human retina may serve as a valuable resource for future investigations of retinal biology and disease. All MS data have been deposited in the ProteomeXchange with identifier PXD001242 (http://proteomecentral.proteomexchange.org/dataset/PXD001242).


Asunto(s)
Bases de Datos de Proteínas , Proteínas del Ojo/química , Proteoma/química , Retina/química , Proteínas del Ojo/análisis , Proteínas del Ojo/clasificación , Humanos , Proteoma/análisis
13.
Exp Eye Res ; 127: 252-60, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25149907

RESUMEN

The retinas of Alzheimer's disease (AD) patients and transgenic AD animal models display amyloid beta deposits and degeneration of ganglion cells. Little is known, however, about the glial changes in the AD retina. The present study used a triple transgenic mouse model (3xTG-AD), which carries mutated human amyloid precursor protein, tau, and presenilin 1 genes and closely mimics the human brain pathology, to investigate retinal glial changes in AD. AD cognitive symptoms are known to begin in the 3xTG-AD mice at four months of age but plaques and tangles are not seen until six to twelve months. Müller cells in 3xTG-AD animals were GFAP-positive, indicating activation, at the earliest time point investigated, nine months. Astrocyte activation was also suggested in the 3xTG-AD mice by an apparent increase in size and process number. Another glial marker, S100, was expressed by astrocytes in both the non-transgenic (NTG) controls and 3xTG-AD retinas. Labeling was predominantly nuclear in nine month non-transgenic (NTG) control mice but was also seen in the cytoplasm and processes at 18 months of age. Interestingly, the nuclear localization was not as prominent in the 3xTG-AD retina even at nine months with labeling observed in astrocyte processes. The diffusion of S100 suggests the possible secretion of this protein, as is seen in the brain, with age and, more profoundly, associated with AD. Several dense, abnormally shaped, opaque structures were noted in all 3xTG-AD mice investigated. These structures, which were enveloped by GFAP and S100-positive astrocytes and Müller cells, were positive for amyloid beta, suggesting that they are amyloid plaques. Staining control retinas with amyloid showed similar structures in 30% of NTG animals but these were fewer in number and not associated with glial activation. The results herein indicate retinal glia activation in the 3xTG-AD mouse retina.


Asunto(s)
Enfermedad de Alzheimer/patología , Astrocitos/patología , Modelos Animales de Enfermedad , Células Ependimogliales/patología , Neuronas Retinianas/citología , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Astrocitos/metabolismo , Recuento de Células , Células Ependimogliales/metabolismo , Proteína Ácida Fibrilar de la Glía , Gliosis/patología , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/metabolismo , Presenilina-1/metabolismo , Proteínas S100/metabolismo , Proteínas tau/metabolismo
14.
J Cell Sci ; 124(Pt 4): 523-31, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21266465

RESUMEN

Phagocytosis of the shed outer segment discs of photoreceptors is a major function of the retinal pigmented epithelium (RPE). We demonstrate for the first time that ßA3/A1-crystallin, a major structural protein of the ocular lens, is expressed in RPE cells. Further, by utilizing the Nuc1 rat, in which the ßA3/A1-crystallin gene is mutated, we show that this protein is required by RPE cells for proper degradation of outer segment discs that have been internalized in phagosomes. We also demonstrate that in wild-type RPE, ßA3/A1-crystallin is localized to the lysosomes. However, in the Nuc1 RPE, ßA3/A1-crystallin fails to translocate to the lysosomes, perhaps because misfolding of the mutant protein masks sorting signals required for proper trafficking. The digestion of phagocytized outer segments requires a high level of lysosomal enzyme activity, and cathepsin D, the major enzyme responsible for proteolysis of the outer segments, is decreased in mutant RPE cells. Interestingly, our results also indicate a defect in the autophagy process in the Nuc1 RPE, which is probably also linked to impaired lysosomal function, because phagocytosis and autophagy might share common mechanisms in degradation of their targets. ßA3/A1-crystallin is a novel lysosomal protein in RPE, essential for degradation of phagocytosed material.


Asunto(s)
Cristalinas/genética , Mutación , Fagosomas/genética , Epitelio Pigmentado de la Retina/metabolismo , Animales , Cristalinas/metabolismo , Fagosomas/metabolismo , Fagosomas/ultraestructura , Ratas , Ratas Sprague-Dawley , Epitelio Pigmentado de la Retina/ultraestructura
15.
Dev Dyn ; 241(3): 595-607, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22275161

RESUMEN

VEGF(165) b is an anti-angiogenic form of VEGF(165) produced by alternative splicing. The localization of pro-angiogenic VEGF(165) and anti-angiogenic VEGF(165) b was investigated during development of the vasculatures in fetal human eyes from 7 to 21 weeks gestation (WG). The fetal vasculature of vitreous, which includes tunica vasculosa lentis (TVL), had moderate VEGF(165) immunoreactivity at 7WG and very little VEGF(165) b. Both forms were elevated at 12WG. VEGF(165) then decreased around 17WG when the TVL regresses but VEGF(165) b remained elevated. In choroid, VEGF(165) was present in forming choriocapillaris (CC) and retinal pigment epithelium (RPE) at 7WG while VEGF165b was present in CC and mesenchymal precursors within the choroidal stroma. By 21WG, both forms were elevated in RPE and choroidal blood vessels but VEGF(165) b was apical and VEGF(165) basal in RPE. Diffuse VEGF(165) immunoreactivity was prominent in 12WG innermost retina where blood vessels will form while VEGF(165) b was present in most CXCR4(+) progenitors in the inner neuroblastic layer and migrating angioblasts in the putative nerve fiber layer. By 21WG, VEGF(165) was present in nerve fibers and VEGF(165) b in the inner Muller cell process. The localization of VEGF(165) b was distinctly different from VEGF(165) both spatially and temporally and it was often associated with nucleus in progenitors.


Asunto(s)
Neovascularización Fisiológica , Vasos Retinianos/embriología , Vasos Retinianos/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Cuerpo Vítreo/irrigación sanguínea , Cuerpo Vítreo/embriología , Núcleo Celular/metabolismo , Femenino , Desarrollo Fetal , Feto/irrigación sanguínea , Feto/metabolismo , Humanos , Embarazo , Primer Trimestre del Embarazo , Retina/embriología
16.
Invest Ophthalmol Vis Sci ; 64(3): 2, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36862121

RESUMEN

Purpose: Age-related macular degeneration (AMD) is a leading cause of blindness among the elderly worldwide. Clinical imaging and histopathologic studies are crucial to understanding disease pathology. This study combined clinical observations of three brothers with geographic atrophy (GA), followed for 20 years, with histopathologic analysis. Methods: For two of the three brothers, clinical images were taken in 2016, 2 years prior to death. Immunohistochemistry, on both flat-mounts and cross sections, histology, and transmission electron microscopy were used to compare the choroid and retina in GA eyes to those of age-matched controls. Results: Ulex europaeus agglutinin (UEA) lectin staining of the choroid demonstrated a significant reduction in the percent vascular area and vessel diameter. In one donor, histopathologic analysis demonstrated two separate areas with choroidal neovascularization (CNV). Reevaluation of swept-source optical coherence tomography angiography (SS-OCTA) images revealed CNV in two of the brothers. UEA lectin also revealed a significant reduction in retinal vasculature in the atrophic area. A subretinal glial membrane, composed of processes positive for glial fibrillary acidic protein and/or vimentin, occupied areas identical to those of retinal pigment epithelium (RPE) and choroidal atrophy in all three AMD donors. SS-OCTA also demonstrated presumed calcific drusen in the two donors imaged in 2016. Immunohistochemical analysis and alizarin red S staining verified calcium within drusen, which was ensheathed by glial processes. Conclusions: This study demonstrates the importance of clinicohistopathologic correlation studies. It emphasizes the need to better understand how the symbiotic relationship between choriocapillaris and RPE, glial response, and calcified drusen impact GA progression.


Asunto(s)
Neovascularización Coroidal , Atrofia Geográfica , Degeneración Macular , Masculino , Anciano , Humanos , Atrofia Geográfica/diagnóstico , Hermanos , Retina/diagnóstico por imagen , Epitelio Pigmentado de la Retina
17.
Exp Eye Res ; 96(1): 147-56, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22200487

RESUMEN

Retinal vascular development is a complex process that is not yet fully understood. The majority of research in this area has focused on astrocytes and the template they form in the inner retina, which precedes endothelial cells in the mouse retina. In humans and dogs, however, astrocyte migration follows behind development of blood vessels, suggesting that other cell types may guide this process. One such cell type is the ganglion cell, which differentiates before blood vessel formation and lies adjacent to the primary retinal vascular plexus. The present study investigated the potential role played by ganglion cells in vascular development using Math5(-/-) mice. It has previously been reported that Math5 regulates the differentiation of ganglion cells and Math5(-/-) mice have a 95% reduction in these cells. The development of blood vessels and glia was investigated using Griffonia simplicifolia isolectin B4 labeling and GFAP immunohistochemistry, respectively. JB-4 analysis demonstrated that the hyaloid vessels arose from choriovitreal vessels adjacent to the optic nerve area. As previously reported, Math5(-/-) mice had a rudimentary optic nerve. The primary retinal vessels did not develop post-natally in the Math5(-/-) mice, however, branches of the hyaloid vasculature eventually dove into the retina and formed the inner retinal capillary networks. An astrocyte template only formed in some areas of the Math5(-/-) retina. In addition, GFAP(+) Müller cells were seen throughout the retina that had long processes wrapped around the hyaloid vessels. Transmission electron microscopy confirmed Müller cell abnormalities and revealed disruptions in the inner limiting membrane. The present data demonstrates that the loss of ganglion cells in the Math5(-/-) mice is associated with a lack of retinal vascular development.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Proteínas del Tejido Nervioso/fisiología , Neuroglía/patología , Células Ganglionares de la Retina/fisiología , Vasos Retinianos/patología , Animales , Animales Recién Nacidos , Técnica del Anticuerpo Fluorescente Indirecta , Eliminación de Gen , Técnicas de Genotipaje , Proteína Ácida Fibrilar de la Glía , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Confocal , Microscopía Electrónica de Transmisión , Fibras Nerviosas/metabolismo , Fibras Nerviosas/patología , Proteínas del Tejido Nervioso/metabolismo , Neuroglía/metabolismo , Vítreo Primario Hiperplásico Persistente/fisiopatología , Lectinas de Plantas/metabolismo , Neovascularización Retiniana/fisiopatología , Vasos Retinianos/metabolismo
18.
Transgenic Res ; 21(5): 1033-42, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22427112

RESUMEN

Nuc1 is a spontaneous rat mutant resulting from a mutation in the Cryba1 gene, coding for ßA3/A1-crystallin. Our earlier studies with Nuc1 provided novel evidence that astrocytes, which express ßA3/A1-crystallin, have a pivotal role in retinal remodeling. The role of astrocytes in the retina is only beginning to be explored. One of the limitations in the field is the lack of appropriate animal models to better investigate the function of astrocytes in retinal health and disease. We have now established transgenic mice that overexpress the Nuc1 mutant form of Cryba1, specifically in astrocytes. Astrocytes in wild type mice show normal compact stellate structure, producing a honeycomb-like network. In contrast, in transgenics over-expressing the mutant (Nuc1) Cryba1 in astrocytes, bundle-like structures with abnormal patterns and morphology were observed. In the nerve fiber layer of the transgenic mice, an additional layer of astrocytes adjacent to the vitreous is evident. This abnormal organization of astrocytes affects both the superficial and deep retinal vascular density and remodeling. Fluorescein angiography showed increased venous dilation and tortuosity of branches in the transgenic retina, as compared to wild type. Moreover, there appear to be fewer interactions between astrocytes and endothelial cells in the transgenic retina than in normal mouse retina. Further, astrocytes overexpressing the mutant ßA3/A1-crystallin migrate into the vitreous, and ensheath the hyaloid artery, in a manner similar to that seen in the Nuc1 rat. Together, these data demonstrate that developmental abnormalities of astrocytes can affect the normal remodeling process of both fetal and retinal vessels of the eye and that ßA3/A1-crystallin is essential for normal astrocyte function in the retina.


Asunto(s)
Astrocitos/fisiología , Cristalinas/metabolismo , Retina/crecimiento & desarrollo , Vasos Retinianos/crecimiento & desarrollo , Animales , Astrocitos/patología , Western Blotting , Movimiento Celular , Forma de la Célula , Cristalinas/genética , Angiografía con Fluoresceína , Técnica del Anticuerpo Fluorescente , Regulación de la Expresión Génica , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Confocal , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Oocitos/citología , Oocitos/metabolismo , Regiones Promotoras Genéticas , Ratas , Retina/patología , Vasos Retinianos/patología , Transgenes
19.
Graefes Arch Clin Exp Ophthalmol ; 250(6): 839-48, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22411126

RESUMEN

BACKGROUND: Nitric oxide (NO) is a multifunctional gaseous molecule that regulates various physiological functions in both neuronal and non-neuronal cells. NO is synthesized by nitric oxide synthases (NOSs), of which three isoforms have been identified. Neuronal NOS (nNOS) and endothelial NOS (eNOS) constitutively produce low levels of NO as a cell-signaling molecule in response to an increase in intracellular calcium concentration. Recent data have revealed a predominant role of eNOS in both angiogenesis and vasculogenesis. METHODS: The immunohistochemical localization of nNOS and eNOS was investigated during embryonic and fetal ocular vascular development from 7 to 21 weeks gestation (WG) on sections of cryopreserved tissue. RESULTS: eNOS was confined to endothelial cells of developing vessels at all ages studied. nNOS was prominent in nuclei of vascular endothelial and smooth muscle cells in the fetal vasculature of vitreous and choriocapillaris. nNOS was also prominent in the nuclei of CXCR4(+) progenitors in the inner retina and inner neuroblastic layer. CONCLUSIONS: These findings demonstrate co-expression of n- and eNOS isoforms in different compartments of vasoformative cells during development. Nuclear nNOS was present in vascular and nonvascular progenitors as well as endothelial cells and pericytes. This suggests that nNOS may play a role in the transcription regulatory systems in endothelial cells and pericytes during ocular hemo-vasculogenesis, vasculogenesis, and angiogenesis.


Asunto(s)
Tejido Conectivo/embriología , Endotelio Vascular/embriología , Ojo/embriología , Músculo Liso Vascular/embriología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Coroides/irrigación sanguínea , Coroides/embriología , Tejido Conectivo/enzimología , Desarrollo Embrionario , Endotelio Vascular/enzimología , Ojo/irrigación sanguínea , Desarrollo Fetal , Edad Gestacional , Humanos , Técnicas para Inmunoenzimas , Microscopía Confocal , Microscopía Fluorescente , Músculo Liso Vascular/enzimología , Neovascularización Fisiológica , Vasos Retinianos/embriología , Vasos Retinianos/enzimología , Cuerpo Vítreo/irrigación sanguínea , Cuerpo Vítreo/embriología
20.
ScientificWorldJournal ; 2012: 949535, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22924029

RESUMEN

The sickle hemoglobin is an abnormal hemoglobin due to point mutation (GAG → GTG) in exon 1 of the ß globin gene resulting in the substitution of glutamic acid by valine at position 6 of the ß globin polypeptide chain. Although the molecular lesion is a single-point mutation, the sickle gene is pleiotropic in nature causing multiple phenotypic expressions that constitute the various complications of sickle cell disease in general and sickle cell anemia in particular. The disease itself is chronic in nature but many of its complications are acute such as the recurrent acute painful crises (its hallmark), acute chest syndrome, and priapism. These complications vary considerably among patients, in the same patient with time, among countries and with age and sex. To date, there is no well-established consensus among providers on the management of the complications of sickle cell disease due in part to lack of evidence and in part to differences in the experience of providers. It is the aim of this paper to review available current approaches to manage the major complications of sickle cell disease. We hope that this will establish another preliminary forum among providers that may eventually lead the way to better outcomes.


Asunto(s)
Anemia de Células Falciformes/complicaciones , Transfusión Sanguínea/métodos , Manejo de la Enfermedad , Anemia de Células Falciformes/genética , Ensayos Clínicos como Asunto , Enfermedades Gastrointestinales/tratamiento farmacológico , Enfermedades Gastrointestinales/etiología , Enfermedades Gastrointestinales/terapia , Humanos , Hidroxiurea/farmacología , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/etiología , Hipertensión Pulmonar/fisiopatología , Enfermedades Musculares/tratamiento farmacológico , Enfermedades Musculares/etiología , Enfermedades Musculares/terapia , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Enfermedades del Sistema Nervioso/etiología , Enfermedades del Sistema Nervioso/terapia , Dolor/tratamiento farmacológico , Dolor/etiología , Dolor/fisiopatología , Fenotipo , Piperazinas/farmacología , Purinas/farmacología , Enfermedades de la Retina/tratamiento farmacológico , Enfermedades de la Retina/etiología , Enfermedades de la Retina/terapia , Citrato de Sildenafil , Sulfonas/farmacología , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA