Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Arch Environ Contam Toxicol ; 81(4): 521-530, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34170356

RESUMEN

Rare earth elements (REEs) are increasingly critical to the high-technology and low-carbon economy. With a shift to sustainable socioeconomic development that aims to be less fossil fuel dependent, global demand for REEs continues to rise, despite their uncertain supply chain and high environmental impact of production. Here, we review recent research on REEs, including global reserve assessment, REE-based applications, major REE production pathways, environmental impacts, and the potential to leverage circular economies within the REE industry. The main objective of this review is to provide an overall socioeconomic and environmental perspective of the REE industry with a central focus on environmental impacts of various REE-related activities. The literature reveals significant interest in extracting REEs from secondary materials (e.g., tailings, bauxite residues, coal combustion ash) and electronic wastes. However, some of these REE recovery processes are not yet economically profitable and environmental-friendly. Continued technological advancements and increasing demands for REEs may entice countries with recently discovered REE reserves to break the current monopolistic REE supply chain. Furthermore, the sustainability of REE usage may also depend on consumer awareness of environmental and human health impacts associated with end-of-life electronics that contain REEs. On the other hand, REEs may show promise in sustainable agriculture and environmental applications. Nevertheless, further research on REE ecotoxicological impacts is required to establish environmental regulations that protect the environment and human health.


Asunto(s)
Residuos Electrónicos , Metales de Tierras Raras , Ceniza del Carbón , Ambiente , Humanos
2.
J Am Med Inform Assoc ; 29(1): 155-162, 2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34664647

RESUMEN

Digital Diabetes Prevention Programs (dDPP) are novel mHealth applications that leverage digital features such as tracking and messaging to support behavior change for diabetes prevention. Despite their clinical effectiveness, long-term engagement to these programs remains a challenge, creating barriers to adherence and meaningful health outcomes. We partnered with a dDPP vendor to develop a personalized automatic message system (PAMS) to promote user engagement to the dDPP platform by sending messages on behalf of their primary care provider. PAMS innovates by integrating into clinical workflows. User-centered design (UCD) methodologies in the form of iterative cycles of focus groups, user interviews, design workshops, and other core UCD activities were utilized to defined PAMS requirements. PAMS uses computational tools to deliver theory-based, automated, tailored messages, and content to support patient use of dDPP. In this article, we discuss the design and development of our system, including key requirements and features, the technical architecture and build, and preliminary user testing.


Asunto(s)
Diabetes Mellitus , Telemedicina , Envío de Mensajes de Texto , Computadores , Diabetes Mellitus/prevención & control , Grupos Focales , Humanos , Telemedicina/métodos
3.
ACS Appl Mater Interfaces ; 13(33): 39606-39620, 2021 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-34387484

RESUMEN

Searching for novel low-cost and eco-friendly materials for energy conversion is a good way to provide widespread utilization of thermoelectric technologies. Herein, we report the thermal behavior, phase equilibria data, and thermoelectric properties for the promising argyrodite-based Cu7P(SxSe1-x)6 thermoelectrics. Alloying of Cu7PSe6 with Cu7PS6 provides a continuous solid solution over the whole compositional range, as shown in the proposed phase diagram for the Cu7PS6-Cu7PSe6 system. As a member of liquid-like materials, the investigated Cu7P(SxSe1-x)6 solid solutions possess a dramatically low lattice thermal conductivity, as low as ∼0.2-0.3 W m-1 K-1, over the entire temperature range. Engineering the configurational entropy of the material by introducing more elements stabilizes the thermoelectrically beneficial high-symmetry γ-phase and promotes the multivalley electronic structure of the valence band. As a result, a remarkable improvement of the Seebeck coefficient and a reduction of electrical resistivity were observed for the investigated alloys. The combined effect of the extremely low lattice thermal conductivity and enhanced power factor leads to the significant enhancement of the thermoelectric figure of merit ZT up to ∼0.75 at 673 K for the Cu7P(SxSe1-x)6 (x = 0.5) sample with the highest configurational entropy, which is around twice higher compared with the pure selenide and almost four times higher than sulfide. This work not only demonstrates the large potential of Cu7P(SxSe1-x)6 materials for energy conversion but also promotes sulfide argyrodites as earth-abundant and environmentally friendly materials for energy conversion.

4.
J Hazard Mater ; 416: 125762, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-33819643

RESUMEN

The degradation of Pentoxifylline (PXF) was achieved successfully by green energy in a built-in solar photocatalytic system using hybrid LiCs ferrites (Li0.5Cs0.5FeO2) as magnetically recoverable photocatalysts. Kinetics showed a first-order reaction rate with maximum PXF removal of 94.91% at mildly acidic pH; additionally, the ferromagnetic properties of catalyst allowed recovery and reuse multiple times, reducing costs and time in degradation processes. The degradation products were identified by HPLC-MS and allowed us to propose a thermodynamically feasible mechanism that was validated through DFT calculations. Additionally, toxicity studies have been performed in bacteria and yeast where high loadings of Cs showed to be harmful to Staphylococcus aureus (MIC≥ 4.0 mg/mL); Salmonella typhi (MIC≥ 8.0 mg/mL) and Candida albicans (MIC≥ 10.0 mg/mL). The presented setup shows effectiveness and robustness in a degradation process using alternative energy sources for the elimination of non-biodegradable pollutants.


Asunto(s)
Pentoxifilina , Contaminantes Químicos del Agua , Catálisis , Cinética , Fotólisis , Luz Solar , Titanio , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
5.
JMIR Res Protoc ; 10(2): e26750, 2021 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-33560240

RESUMEN

BACKGROUND: Digital diabetes prevention programs (dDPPs) are effective behavior change tools to prevent disease progression in patients at risk for diabetes. At present, these programs are poorly integrated into existing health information technology infrastructure and clinical workflows, resulting in barriers to provider-level knowledge of, interaction with, and support of patients who use dDPPs. Tools that can facilitate patient-provider interaction around dDPPs may contribute to improved patient engagement and adherence to these programs and improved health outcomes. OBJECTIVE: This study aims to use a rigorous, user-centered design (UCD) methodology to develop a theory-driven system that supports patient engagement with dDPPs and their primary care providers with their care. METHODS: This study will be conducted in 3 phases. In phase 1, we will use systematic UCD, Agile software development, and qualitative research methods to identify key user (patients, providers, clinical staff, digital health technologists, and content experts) requirements, constraints, and prioritization of high-impact features to design, develop, and refine a viable intervention prototype for the engagement system. In phase 2, we will conduct a single-arm feasibility pilot of the engagement system among patients with prediabetes and their primary care providers. In phase 3, we will conduct a 2-arm randomized controlled trial using the engagement system. Primary outcomes will be weight, BMI, and A1c at 6 and 12 months. Secondary outcomes will be patient engagement (use and activity) in the dDPP. The mediator variables (self-efficacy, digital health literacy, and patient-provider relationship) will be measured. RESULTS: The project was initiated in 2018 and funded in September 2019. Enrollment and data collection for phase 1 began in September 2019 under an Institutional Review Board quality improvement waiver granted in July 2019. As of December 2020, 27 patients have been enrolled and first results are expected to be submitted for publication in early 2021. The study received Institutional Review Board approval for phases 2 and 3 in December 2020, and phase 2 enrollment is expected to begin in early 2021. CONCLUSIONS: Our findings will provide guidance for the design and development of technology to integrate dDPP platforms into existing clinical workflows. This will facilitate patient engagement in digital behavior change interventions and provider engagement in patients' use of dDPPs. Integrated clinical tools that can facilitate patient-provider interaction around dDPPs may contribute to improved patient adherence to these programs and improved health outcomes by addressing barriers faced by both patients and providers. Further evaluation with pilot testing and a clinical trial will assess the effectiveness and implementation of these tools. TRIAL REGISTRATION: ClinicalTrials.gov NCT04049500; https://clinicaltrials.gov/ct2/show/NCT04049500. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/26750.

6.
J Biomech ; 37(4): 503-10, 2004 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-14996562

RESUMEN

The purpose of this study is to quantify the spatial distribution of acoustic velocities and elastic properties (elastic constants) on Human femoral cortical bone. Four cross sections (average thickness of 2.09+/-0.27 mm) have been cut transversally between 40% and 70% of the total length and between them parallelepiped samples in each quadrant have been cut. Ultrasonic technique in transmission with immersion focused transducers at 5 MHz and contact transducers 2.25 MHz were used on the cross sections and parallelepiped samples, respectively. The first technique allows relative spatial distribution of velocities to be obtained, meanwhile the second technique allows the direct assessment of elastic constants. For both techniques, bulk velocities were found to be lower at the posterior side with an increase along the length (from 40% to 70% total length) (p < 0.05). Densities and elastic constants show equivalent pattern of variation. These variations are mainly due the cortical porosity related to vascularisation environment. The spatial distribution of velocities exhibits significant radial variation from the endosteal to the periosteal region. This is in agreement with variation of the porosity at that location. Same range of velocities was obtained with both techniques. The range of longitudinal velocities values varies from 3548 to 3967 m/s and between 18.5 and 33.1 GPa for the bulk velocities and axial elastic constants, respectively. Our results are within the range with those found in the literature. However, it must be noted that the range of acoustic and elastic properties variation is concerning the same bone. So, our new results show the ability of the technique to quantify accurately local variation of acoustic and elastic properties (within the section and along the length) of human cortical bone. Furthermore, our immersion technique could be used to assess the spatial distribution of the elastic constants with the knowledge of spatial distribution of densities.


Asunto(s)
Fémur/fisiología , Acústica , Anciano , Fenómenos Biomecánicos , Densidad Ósea , Cadáver , Calibración , Elasticidad , Estudios de Factibilidad , Fémur/diagnóstico por imagen , Humanos , Inmersión , Masculino , Métodos , Periostio/fisiología , Reproducibilidad de los Resultados , Transductores , Ultrasonografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA