Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Nature ; 567(7748): E13, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30837740

RESUMEN

In this Letter, in "About 75% of this reduction is expected to come from emission reductions and the remaining 25% from land use, land-use change and forestry", '25%' should read '1%' and '75%' should read '99%'. In the sentence "The carbon-sink-maximizing portfolio has a small negative effect on annual precipitation (-2 mm) and no effect on air temperature (Table 1)" the word 'precipitation' was omitted. Denmark was accidentally deleted during the conversion of Fig. 1. The original Letter has been corrected online.

2.
Glob Chang Biol ; 30(1): e16982, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37902299

RESUMEN

Over 50 years ago, Eugene Odum postulated that mature or climax forests reside in carbon neutrality. As climate change rose to prominence in the international environmental agenda, the neutrality hypothesis transformed from an ecological principle to a justification for using forest management in combating climate change. Despite persistent efforts, Odum's neutrality hypothesis has resisted both confirmation and refutation. In this opinion we show the limitations of past efforts to (in)validate Odum's neutrality hypothesis and propose new research directions for the community to permit a more general confirmation or refutation with current and near-future observations. We then demonstrate such an approach by using metabolic theory to formulate testable predictions for the total sink strength considering soil, litter, and biomass of mature or climax forests based on observations of tree biomass and individual density. In doing so, we show that ecological theory can create additional relevant, testable hypotheses to provide timely support to decision-makers seeking to address one of the world's most pressing environmental challenges.


Asunto(s)
Carbono , Bosques , Carbono/metabolismo , Árboles/metabolismo , Biomasa , Secuestro de Carbono
3.
Glob Chang Biol ; 30(5): e17305, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38712651

RESUMEN

Anthropogenic climate change is altering precipitation regimes at a global scale. While precipitation changes have been linked to changes in the abundance and diversity of soil and litter invertebrate fauna in forests, general trends have remained elusive due to mixed results from primary studies. We used a meta-analysis based on 430 comparisons from 38 primary studies to address associated knowledge gaps, (i) quantifying impacts of precipitation change on forest soil and litter fauna abundance and diversity, (ii) exploring reasons for variation in impacts and (iii) examining biases affecting the realism and accuracy of experimental studies. Precipitation reductions led to a decrease of 39% in soil and litter fauna abundance, with a 35% increase in abundance under precipitation increases, while diversity impacts were smaller. A statistical model containing an interaction between body size and the magnitude of precipitation change showed that mesofauna (e.g. mites, collembola) responded most to changes in precipitation. Changes in taxonomic richness were related solely to the magnitude of precipitation change. Our results suggest that body size is related to the ability of a taxon to survive under drought conditions, or to benefit from high precipitation. We also found that most experiments manipulated precipitation in a way that aligns better with predicted extreme climatic events than with predicted average annual changes in precipitation and that the experimental plots used in experiments were likely too small to accurately capture changes for mobile taxa. The relationship between body size and response to precipitation found here has far-reaching implications for our ability to predict future responses of soil biodiversity to climate change and will help to produce more realistic mechanistic soil models which aim to simulate the responses of soils to global change.


Asunto(s)
Tamaño Corporal , Cambio Climático , Bosques , Lluvia , Suelo , Animales , Suelo/química , Biodiversidad , Invertebrados/fisiología
4.
Nature ; 562(7726): 259-262, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30305744

RESUMEN

The Paris Agreement promotes forest management as a pathway towards halting climate warming through the reduction of carbon dioxide (CO2) emissions1. However, the climate benefits from carbon sequestration through forest management may be reinforced, counteracted or even offset by concurrent management-induced changes in surface albedo, land-surface roughness, emissions of biogenic volatile organic compounds, transpiration and sensible heat flux2-4. Consequently, forest management could offset CO2 emissions without halting global temperature rise. It therefore remains to be confirmed whether commonly proposed sustainable European forest-management portfolios would comply with the Paris Agreement-that is, whether they can reduce the growth rate of atmospheric CO2, reduce the radiative imbalance at the top of the atmosphere, and neither increase the near-surface air temperature nor decrease precipitation by the end of the twenty-first century. Here we show that the portfolio made up of management systems that locally maximize the carbon sink through carbon sequestration, wood use and product and energy substitution reduces the growth rate of atmospheric CO2, but does not meet any of the other criteria. The portfolios that maximize the carbon sink or forest albedo pass only one-different in each case-criterion. Managing the European forests with the objective of reducing near-surface air temperature, on the other hand, will also reduce the atmospheric CO2 growth rate, thus meeting two of the four criteria. Trade-off are thus unavoidable when using European forests to meet climate objectives. Furthermore, our results demonstrate that if present-day forest cover is sustained, the additional climate benefits achieved through forest management would be modest and local, rather than global. On the basis of these findings, we argue that Europe should not rely on forest management to mitigate climate change. The modest climate effects from changes in forest management imply, however, that if adaptation to future climate were to require large-scale changes in species composition and silvicultural systems over Europe5,6, the forests could be adapted to climate change with neither positive nor negative  climate effects.


Asunto(s)
Secuestro de Carbono , Agricultura Forestal , Bosques , Calentamiento Global/legislación & jurisprudencia , Calentamiento Global/prevención & control , Objetivos , Desarrollo Sostenible/legislación & jurisprudencia , Aire , Atmósfera/química , Dióxido de Carbono/análisis , Europa (Continente) , Mapeo Geográfico , Cooperación Internacional , Temperatura
5.
Nature ; 553(7686): 73-76, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29258288

RESUMEN

Carbon stocks in vegetation have a key role in the climate system. However, the magnitude, patterns and uncertainties of carbon stocks and the effect of land use on the stocks remain poorly quantified. Here we show, using state-of-the-art datasets, that vegetation currently stores around 450 petagrams of carbon. In the hypothetical absence of land use, potential vegetation would store around 916 petagrams of carbon, under current climate conditions. This difference highlights the massive effect of land use on biomass stocks. Deforestation and other land-cover changes are responsible for 53-58% of the difference between current and potential biomass stocks. Land management effects (the biomass stock changes induced by land use within the same land cover) contribute 42-47%, but have been underestimated in the literature. Therefore, avoiding deforestation is necessary but not sufficient for mitigation of climate change. Our results imply that trade-offs exist between conserving carbon stocks on managed land and raising the contribution of biomass to raw material and energy supply for the mitigation of climate change. Efforts to raise biomass stocks are currently verifiable only in temperate forests, where their potential is limited. By contrast, large uncertainties hinder verification in the tropical forest, where the largest potential is located, pointing to challenges for the upcoming stocktaking exercises under the Paris agreement.


Asunto(s)
Crianza de Animales Domésticos , Biomasa , Agricultura Forestal , Bosques , Actividades Humanas , Internacionalidad , Plantas/metabolismo , Animales , Carbono/análisis , Secuestro de Carbono , Conservación de los Recursos Naturales/legislación & jurisprudencia , Calentamiento Global/legislación & jurisprudencia , Calentamiento Global/prevención & control , Plantas/química , Árboles/química , Árboles/metabolismo , Clima Tropical , Incertidumbre
7.
Nature ; 556(7699): 35-37, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29620741
8.
Glob Chang Biol ; 24(4): 1470-1487, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29235213

RESUMEN

As the applications of Earth system models (ESMs) move from general climate projections toward questions of mitigation and adaptation, the inclusion of land management practices in these models becomes crucial. We carried out a survey among modeling groups to show an evolution from models able only to deal with land-cover change to more sophisticated approaches that allow also for the partial integration of land management changes. For the longer term a comprehensive land management representation can be anticipated for all major models. To guide the prioritization of implementation, we evaluate ten land management practices-forestry harvest, tree species selection, grazing and mowing harvest, crop harvest, crop species selection, irrigation, wetland drainage, fertilization, tillage, and fire-for (1) their importance on the Earth system, (2) the possibility of implementing them in state-of-the-art ESMs, and (3) availability of required input data. Matching these criteria, we identify "low-hanging fruits" for the inclusion in ESMs, such as basic implementations of crop and forestry harvest and fertilization. We also identify research requirements for specific communities to address the remaining land management practices. Data availability severely hampers modeling the most extensive land management practice, grazing and mowing harvest, and is a limiting factor for a comprehensive implementation of most other practices. Inadequate process understanding hampers even a basic assessment of crop species selection and tillage effects. The need for multiple advanced model structures will be the challenge for a comprehensive implementation of most practices but considerable synergy can be gained using the same structures for different practices. A continuous and closer collaboration of the modeling, Earth observation, and land system science communities is thus required to achieve the inclusion of land management in ESMs.


Asunto(s)
Cambio Climático , Conservación de los Recursos Naturales/métodos , Planeta Tierra , Ecosistema , Modelos Teóricos
9.
Glob Chang Biol ; 23(2): 512-533, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27447350

RESUMEN

In the light of daunting global sustainability challenges such as climate change, biodiversity loss and food security, improving our understanding of the complex dynamics of the Earth system is crucial. However, large knowledge gaps related to the effects of land management persist, in particular those human-induced changes in terrestrial ecosystems that do not result in land-cover conversions. Here, we review the current state of knowledge of ten common land management activities for their biogeochemical and biophysical impacts, the level of process understanding and data availability. Our review shows that ca. one-tenth of the ice-free land surface is under intense human management, half under medium and one-fifth under extensive management. Based on our review, we cluster these ten management activities into three groups: (i) management activities for which data sets are available, and for which a good knowledge base exists (cropland harvest and irrigation); (ii) management activities for which sufficient knowledge on biogeochemical and biophysical effects exists but robust global data sets are lacking (forest harvest, tree species selection, grazing and mowing harvest, N fertilization); and (iii) land management practices with severe data gaps concomitant with an unsatisfactory level of process understanding (crop species selection, artificial wetland drainage, tillage and fire management and crop residue management, an element of crop harvest). Although we identify multiple impediments to progress, we conclude that the current status of process understanding and data availability is sufficient to advance with incorporating management in, for example, Earth system or dynamic vegetation models in order to provide a systematic assessment of their role in the Earth system. This review contributes to a strategic prioritization of research efforts across multiple disciplines, including land system research, ecological research and Earth system modelling.


Asunto(s)
Cambio Climático , Conservación de los Recursos Naturales , Biodiversidad , Ecosistema , Árboles
10.
Proc Natl Acad Sci U S A ; 111(24): 8856-60, 2014 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-24889643

RESUMEN

The traditional view of forest dynamics originated by Kira and Shidei [Kira T, Shidei T (1967) Jap J Ecol 17:70-87] and Odum [Odum EP (1969) Science 164(3877):262-270] suggests a decline in net primary productivity (NPP) in aging forests due to stabilized gross primary productivity (GPP) and continuously increased autotrophic respiration (Ra). The validity of these trends in GPP and Ra is, however, very difficult to test because of the lack of long-term ecosystem-scale field observations of both GPP and Ra. Ryan and colleagues [Ryan MG, Binkley D, Fownes JH (1997) Ad Ecol Res 27:213-262] have proposed an alternative hypothesis drawn from site-specific results that aboveground respiration and belowground allocation decreased in aging forests. Here, we analyzed data from a recently assembled global database of carbon fluxes and show that the classical view of the mechanisms underlying the age-driven decline in forest NPP is incorrect and thus support Ryan's alternative hypothesis. Our results substantiate the age-driven decline in NPP, but in contrast to the traditional view, both GPP and Ra decline in aging boreal and temperate forests. We find that the decline in NPP in aging forests is primarily driven by GPP, which decreases more rapidly with increasing age than Ra does, but the ratio of NPP/GPP remains approximately constant within a biome. Our analytical models describing forest succession suggest that dynamic forest ecosystem models that follow the traditional paradigm need to be revisited.


Asunto(s)
Fotosíntesis , Árboles/crecimiento & desarrollo , Biomasa , Carbono/análisis , Ciclo del Carbono , Respiración de la Célula , Ecosistema , Modelos Biológicos
12.
Nature ; 455(7210): 213-5, 2008 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-18784722

RESUMEN

Old-growth forests remove carbon dioxide from the atmosphere at rates that vary with climate and nitrogen deposition. The sequestered carbon dioxide is stored in live woody tissues and slowly decomposing organic matter in litter and soil. Old-growth forests therefore serve as a global carbon dioxide sink, but they are not protected by international treaties, because it is generally thought that ageing forests cease to accumulate carbon. Here we report a search of literature and databases for forest carbon-flux estimates. We find that in forests between 15 and 800 years of age, net ecosystem productivity (the net carbon balance of the forest including soils) is usually positive. Our results demonstrate that old-growth forests can continue to accumulate carbon, contrary to the long-standing view that they are carbon neutral. Over 30 per cent of the global forest area is unmanaged primary forest, and this area contains the remaining old-growth forests. Half of the primary forests (6 x 10(8) hectares) are located in the boreal and temperate regions of the Northern Hemisphere. On the basis of our analysis, these forests alone sequester about 1.3 +/- 0.5 gigatonnes of carbon per year. Thus, our findings suggest that 15 per cent of the global forest area, which is currently not considered when offsetting increasing atmospheric carbon dioxide concentrations, provides at least 10 per cent of the global net ecosystem productivity. Old-growth forests accumulate carbon for centuries and contain large quantities of it. We expect, however, that much of this carbon, even soil carbon, will move back to the atmosphere if these forests are disturbed.


Asunto(s)
Carbono/metabolismo , Ecosistema , Árboles/metabolismo , Animales , Atmósfera/química , Biomasa , Dióxido de Carbono/metabolismo , Bases de Datos Factuales , Desastres , Historia del Siglo XV , Historia del Siglo XVI , Historia del Siglo XVII , Historia del Siglo XVIII , Historia del Siglo XIX , Historia del Siglo XX , Historia del Siglo XXI , Historia Antigua , Historia Medieval , Actividades Humanas , Factores de Tiempo
13.
Nature ; 451(7174): 49-52, 2008 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-18172494

RESUMEN

The carbon balance of terrestrial ecosystems is particularly sensitive to climatic changes in autumn and spring, with spring and autumn temperatures over northern latitudes having risen by about 1.1 degrees C and 0.8 degrees C, respectively, over the past two decades. A simultaneous greening trend has also been observed, characterized by a longer growing season and greater photosynthetic activity. These observations have led to speculation that spring and autumn warming could enhance carbon sequestration and extend the period of net carbon uptake in the future. Here we analyse interannual variations in atmospheric carbon dioxide concentration data and ecosystem carbon dioxide fluxes. We find that atmospheric records from the past 20 years show a trend towards an earlier autumn-to-winter carbon dioxide build-up, suggesting a shorter net carbon uptake period. This trend cannot be explained by changes in atmospheric transport alone and, together with the ecosystem flux data, suggest increasing carbon losses in autumn. We use a process-based terrestrial biosphere model and satellite vegetation greenness index observations to investigate further the observed seasonal response of northern ecosystems to autumnal warming. We find that both photosynthesis and respiration increase during autumn warming, but the increase in respiration is greater. In contrast, warming increases photosynthesis more than respiration in spring. Our simulations and observations indicate that northern terrestrial ecosystems may currently lose carbon dioxide in response to autumn warming, with a sensitivity of about 0.2 PgC degrees C(-1), offsetting 90% of the increased carbon dioxide uptake during spring. If future autumn warming occurs at a faster rate than in spring, the ability of northern ecosystems to sequester carbon may be diminished earlier than previously suggested.


Asunto(s)
Dióxido de Carbono/metabolismo , Ecosistema , Estaciones del Año , Temperatura , Atmósfera/química , Biomasa , Dióxido de Carbono/análisis , Respiración de la Célula , Combustibles Fósiles , Geografía , Efecto Invernadero , Historia del Siglo XX , Historia del Siglo XXI , Océanos y Mares , Fotosíntesis , Transpiración de Plantas , Plantas/metabolismo , Lluvia , Suelo/análisis , Agua/metabolismo
14.
Environ Sci Technol ; 47(22): 13132-40, 2013 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-24138534

RESUMEN

Climate mitigation activities in forests need to be quantified in terms of the long-term effects on forest carbon stocks, accumulation, and emissions. The impacts of future environmental change and bioenergy harvests on regional forest carbon storage have not been quantified. We conducted a comprehensive modeling study and life-cycle assessment of the impacts of projected changes in climate, CO2 concentration, and N deposition, and region-wide forest management policies on regional forest carbon fluxes. By 2100, if current management strategies continue, then the warming and CO2 fertilization effect in the given projections result in a 32-68% increase in net carbon uptake, overshadowing increased carbon emissions from projected increases in fire activity and other forest disturbance factors. To test the response to new harvesting strategies, repeated thinnings were applied in areas susceptible to fire to reduce mortality, and two clear-cut rotations were applied in productive forests to provide biomass for wood products and bioenergy. The management strategies examined here lead to long-term increased carbon emissions over current harvesting practices, although semiarid regions contribute little to the increase. The harvest rates were unsustainable. This comprehensive approach could serve as a foundation for regional place-based assessments of management effects on future carbon sequestration by forests in other locations.


Asunto(s)
Contaminantes Atmosféricos/análisis , Carbono/análisis , Ambiente , Árboles/química , Dióxido de Carbono/análisis , Clima , Ecosistema , Incendios , Geografía , Oregon , Factores de Tiempo
15.
Natl Sci Rev ; 8(2): nwaa145, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34691569

RESUMEN

Resolving regional carbon budgets is critical for informing land-based mitigation policy. For nine regions covering nearly the whole globe, we collected inventory estimates of carbon-stock changes complemented by satellite estimates of biomass changes where inventory data are missing. The net land-atmospheric carbon exchange (NEE) was calculated by taking the sum of the carbon-stock change and lateral carbon fluxes from crop and wood trade, and riverine-carbon export to the ocean. Summing up NEE from all regions, we obtained a global 'bottom-up' NEE for net land anthropogenic CO2 uptake of -2.2 ± 0.6 PgC yr-1 consistent with the independent top-down NEE from the global atmospheric carbon budget during 2000-2009. This estimate is so far the most comprehensive global bottom-up carbon budget accounting, which set up an important milestone for global carbon-cycle studies. By decomposing NEE into component fluxes, we found that global soil heterotrophic respiration amounts to a source of CO2 of 39 PgC yr-1 with an interquartile of 33-46 PgC yr-1-a much smaller portion of net primary productivity than previously reported.

16.
Ecology ; 91(3): 652-61, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20426325

RESUMEN

Forest autotrophic respiration (R(a)) plays an important role in the carbon balance of forest ecosystems. However, its drivers at the global scale are not well known. Based on a global forest database, we explore the relationships of annual R(a) with mean annual temperature (MAT) and biotic factors including net primary productivity (NPP), total biomass, stand age, mean tree height, and maximum leaf area index (LAI). The results show that the spatial patterns of forest annual R(a) at the global scale are largely controlled by temperature. R(a) is composed of growth (R(g)) and maintenance respiration (R(m)). We used a modified Arrhenius equation to express the relationship between R(a) and MAT. This relationship was calibrated with our data and shows that a 10 degrees C increase in MAT will result in an increase of annual R(m) by a factor of 1.9-2.5 (Q10). We also found that the fraction of total assimilation (gross primary production, GPP) used in R(a) is lowest in the temperate regions characterized by a MAT of approximately 11 degrees C. Although we could not confirm a relationship between the ratio of R(a) to GPP and age across all forest sites, the R(a) to GPP ratio tends to significantly increase in response to increasing age for sites with MAT between 8 degrees and 12 degrees C. At the plant scale, direct up-scaled R(a) estimates were found to increase as a power function with forest total biomass; however, the coefficient of the power function (0.2) was much smaller than that expected from previous studies (0.75 or 1). At the ecosystem scale, R(a) estimates based on both GPP - NPP and TER - R(h) (total ecosystem respiration - heterotrophic respiration) were not significantly correlated with forest total biomass (P > 0.05) with either a linear or a power function, implying that the previous individual-based metabolic theory may be not suitable for the application at ecosystem scale.


Asunto(s)
Procesos Autotróficos/fisiología , Carbono/metabolismo , Ecosistema , Árboles/metabolismo , Biomasa , Bases de Datos Factuales , Metabolismo Energético , Modelos Biológicos , Consumo de Oxígeno , Temperatura
17.
Sci Rep ; 9(1): 3643, 2019 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-30842476

RESUMEN

A new reconstruction of changes in Taiwan's land cover and estimated uncertainty between 1904 and 2015 is presented. The reconstruction is made by integrating geographical information from historical maps and SPOT satellite images, to obtain spatially explicit land cover maps with a resolution of 500 × 500 m and distinguishes six land cover classes: forests, grasslands, agricultural land, inland water, built-up land, and bare soil. The temporal resolution is unbalanced being derived from four historical maps describing the land cover between 1904 and 1994 and five mosaic satellite images describing the land cover between 1995 and 2015. The uncertainty of the historical maps is quantified to show the aggregation error whereas the uncertainty of the satellite images is quantified as classification error. Since 1904, Taiwan, as a developing country, has gone through a not unusual sequence of population growth and subsequent urbanization, a decoupling of the demand for agricultural land from population growth, and a transition from shrinking in forest area to forest expansion. This new land cover reconstruction is expected to contribute to future revisions of global land cover reconstructions as well as to studies of (gross) land cover changes, the carbon budget, regional climate, urban heat islands, and air and water pollution at the national and sub-national level.

19.
Carbon Balance Manag ; 13(1): 26, 2018 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-30547241

RESUMEN

BACKGROUND: Concern about climate change has motivated France to reduce its reliance on fossil fuel by setting targets for increased biomass-based renewable energy production. This study quantifies the carbon costs and benefits for the French forestry sector in meeting these targets. A forest growth and harvest simulator was developed for French forests using recent forest inventory data, and the wood-use chain was reconstructed from national wood product statistics. We then projected wood production, bioenergy production, and carbon balance for three realistic intensification scenarios and a business-as-usual scenario. These intensification scenarios targeted either overstocked, harvest-delayed or currently actively managed stands. RESULTS: All three intensification strategies produced 11.6-12.4 million tonnes of oil equivalent per year of wood-based energy by 2026, which corresponds to the target assigned to French wood-energy to meet the EU 2020 renewable energy target. Sustaining this level past 2026 will be challenging, let alone further increasing it. Although energy production targets can be reached, the management intensification required will degrade the near-term carbon balance of the forestry sector, compared to continuing present-day management. Even for the best-performing intensification strategy, i.e., reducing the harvest diameter of actively managed stands, the carbon benefits would only become apparent after 2040. The carbon balance of a strategy putting abandoned forests back into production would only break even by 2055; the carbon balance from increasing thinning in managed but untended stands would not break even within the studied time periods, i.e. 2015-2045 and 2046-2100. Owing to the temporal dynamics in the components of the carbon balance, i.e., the biomass stock in the forest, the carbon stock in wood products, and substitution benefits, the merit order of the examined strategies varies over time. CONCLUSIONS: No single solution was found to improve the carbon balance of the forestry sector by 2040 in a way that also met energy targets. We therefore searched for the intensification scenario that produces energy at the lowest carbon cost. Reducing rotation time of actively managed stands is slightly more efficient than targeting harvest-delayed stands, but in both cases, each unit of energy produced has a carbon cost that only turns into a benefit between 2060 and 2080.

20.
Sci Total Environ ; 361(1-3): 189-95, 2006 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-16061272

RESUMEN

Acidification of forest soils in Europe and North America has been an important concern over the last decades. The last area-covering survey of forest soil acidification in Flanders (North Belgium) goes back to 1985 [Ronse A, De Temmerman L, Guns M, De Borger R. Evolution of acidity, organic matter content, and CEC in uncultivated soils of North Belgium during the past 25 years. Soil Sci; 146, (1988), 453-460] and highlighted a significant acidification of the upper layer (0.3-0.4 m) of forested podzols during the period 1950-1985. The present study aimed to assess (1) to what extent further acidification of forested podzols occurred during the period 1985-2000 at different depths and (2) whether the average annual acidification rate accelerated or slowed down between 1985 and 2000 compared to the period 1950-1985. Average soil pH-KCl values of podzols in northern Belgium dropped during the period 1985-2000. This decline extends to a depth of about 50 cm but was most pronounced and significant in the A horizon. In the A(0), A(1) and A(2) horizons, average pH dropped with 0.2, 0.3 and 0.1 units, and in the B(ir) and C horizons with 0.1 units. No change in average pH value occurred in the B(h) horizon. Average annual acidification rate of the A(1) horizon was significantly higher in the period 1985-2000 than in the period 1950-1985. Changes in pH occurred in the entire soil profile during the period 1950/67-1985 likely because sulphate was the major form of acid deposition before 1985. After 1985, acid sulphur deposition decreased with more than 50% in North Belgium. In contrast, ammonium deposition almost doubled between 1950 and 1980, which may explain why soil acidification between 1985 and 2000 has been restricted to the upper soil horizons.


Asunto(s)
Lluvia Ácida , Suelo , Árboles , Bélgica , Monitoreo del Ambiente , Concentración de Iones de Hidrógeno , Cloruro de Potasio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA