Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Cell ; 176(1-2): 144-153.e13, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30554877

RESUMEN

Abasic sites are one of the most common DNA lesions. All known abasic site repair mechanisms operate only when the damage is in double-stranded DNA. Here, we report the discovery of 5-hydroxymethylcytosine (5hmC) binding, ESC-specific (HMCES) as a sensor of abasic sites in single-stranded DNA. HMCES acts at replication forks, binds PCNA and single-stranded DNA, and generates a DNA-protein crosslink to shield abasic sites from error-prone processing. This unusual HMCES DNA-protein crosslink intermediate is resolved by proteasome-mediated degradation. Acting as a suicide enzyme, HMCES prevents translesion DNA synthesis and the action of endonucleases that would otherwise generate mutations and double-strand breaks. HMCES is evolutionarily conserved in all domains of life, and its biochemical properties are shared with its E. coli ortholog. Thus, HMCES is an ancient DNA lesion recognition protein that preserves genome integrity by promoting error-free repair of abasic sites in single-stranded DNA.


Asunto(s)
5-Metilcitosina/análogos & derivados , Reparación del ADN/fisiología , ADN de Cadena Simple/fisiología , 5-Metilcitosina/metabolismo , Ácido Apurínico/metabolismo , ADN/metabolismo , Daño del ADN/fisiología , Replicación del ADN/fisiología , ADN de Cadena Simple/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endonucleasas , Escherichia coli/metabolismo , Polinucleótidos/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo
2.
Genes Dev ; 27(14): 1610-23, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23873943

RESUMEN

The DNA damage response kinase ataxia telangiectasia and Rad3-related (ATR) coordinates much of the cellular response to replication stress. The exact mechanisms by which ATR regulates DNA synthesis in conditions of replication stress are largely unknown, but this activity is critical for the viability and proliferation of cancer cells, making ATR a potential therapeutic target. Here we use selective ATR inhibitors to demonstrate that acute inhibition of ATR kinase activity yields rapid cell lethality, disrupts the timing of replication initiation, slows replication elongation, and induces fork collapse. We define the mechanism of this fork collapse, which includes SLX4-dependent cleavage yielding double-strand breaks and CtIP-dependent resection generating excess single-stranded template and nascent DNA strands. Our data suggest that the DNA substrates of these nucleases are generated at least in part by the SMARCAL1 DNA translocase. Properly regulated SMARCAL1 promotes stalled fork repair and restart; however, unregulated SMARCAL1 contributes to fork collapse when ATR is inactivated in both mammalian and Xenopus systems. ATR phosphorylates SMARCAL1 on S652, thereby limiting its fork regression activities and preventing aberrant fork processing. Thus, phosphorylation of SMARCAL1 is one mechanism by which ATR prevents fork collapse, promotes the completion of DNA replication, and maintains genome integrity.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , ADN Helicasas/metabolismo , Replicación del ADN/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , ADN Helicasas/genética , Replicación del ADN/efectos de los fármacos , ADN de Cadena Simple/genética , Activación Enzimática , Humanos , Fosforilación/efectos de los fármacos , Unión Proteica , Inhibidores de Proteínas Quinasas/farmacología , Xenopus
3.
Sci Adv ; 7(51): eabf9441, 2021 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-34910513

RESUMEN

Mitochondrial DNA (mtDNA) instability activates cGAS-dependent innate immune signaling by unknown mechanisms. Here, we find that Fanconi anemia suppressor genes are acting in the mitochondria to protect mtDNA replication forks from instability. Specifically, Fanconi anemia patient cells show a loss of nascent mtDNA through MRE11 nuclease degradation. In contrast to DNA replication fork stability, which requires pathway activation by FANCD2-FANCI monoubiquitination and upstream FANC core complex genes, mitochondrial replication fork protection does not, revealing a mechanistic and genetic separation between mitochondrial and nuclear genome stability pathways. The degraded mtDNA causes hyperactivation of cGAS-dependent immune signaling resembling the unphosphorylated ISG3 response. Chemical inhibition of MRE11 suppresses this innate immune signaling, identifying MRE11 as a nuclease responsible for activating the mtDNA-dependent cGAS/STING response. Collective results establish a previously unknown molecular pathway for mtDNA replication stability and reveal a molecular handle to control mtDNA-dependent cGAS activation by inhibiting MRE11 nuclease.

4.
Cell Rep ; 28(13): 3497-3509.e4, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31553917

RESUMEN

Identifying proteins that function at replication forks is essential to understanding DNA replication, chromatin assembly, and replication-coupled DNA repair mechanisms. Combining quantitative mass spectrometry in multiple cell types with stringent statistical cutoffs, we generated a high-confidence catalog of 593 proteins that are enriched at replication forks and nascent chromatin. Loss-of-function genetic analyses indicate that 85% yield phenotypes that are consistent with activities in DNA and chromatin replication or already have described functions in these processes. We illustrate the value of this resource by identifying activities of the BET family proteins BRD2, BRD3, and BRD4 in controlling DNA replication. These proteins use their extra-terminal domains to bind and inhibit the ATAD5 complex and thereby control the amount of PCNA on chromatin.


Asunto(s)
Proteínas Nucleares/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteoma/metabolismo , Humanos
5.
J Cell Biol ; 217(4): 1521-1536, 2018 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-29475976

RESUMEN

DNA replication reactions are central to diverse cellular processes including development, cancer etiology, drug treatment, and resistance. Many proteins and pathways exist to ensure DNA replication fidelity and protection of stalled or damaged replication forks. Consistently, mutations in proteins involved in DNA replication are implicated in diverse diseases that include defects during embryonic development and immunity, accelerated aging, increased inflammation, blood disease, and cancer. Thus, tools for efficient quantitative analysis of protein interactions at active and stalled replication forks are key for advanced and accurate biological understanding. Here we describe a sensitive single-cell-level assay system for the quantitative analysis of protein interactions with nascent DNA. Specifically, we achieve robust in situ analysis of protein interactions at DNA replication forks (SIRF) using proximity ligation coupled with 5'-ethylene-2'-deoxyuridine click chemistry suitable for multiparameter analysis in heterogeneous cell populations. We provide validation data for sensitivity, accuracy, proximity, and quantitation. Using SIRF, we obtained new insight on the regulation of pathway choice by 53BP1 at transiently stalled replication forks.


Asunto(s)
Neoplasias de la Mama/metabolismo , Roturas del ADN de Doble Cadena , Replicación del ADN , ADN de Neoplasias/biosíntesis , Fibroblastos/metabolismo , Microscopía Fluorescente , Análisis de la Célula Individual/métodos , Proteína 1 de Unión al Supresor Tumoral P53/metabolismo , Animales , Sitios de Unión , Neoplasias de la Mama/genética , ADN de Neoplasias/genética , Femenino , Humanos , Cinética , Células MCF-7 , Masculino , Ratones Endogámicos C57BL , Unión Proteica , Proteína 1 de Unión al Supresor Tumoral P53/genética
6.
Elife ; 72018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29334356

RESUMEN

Classically, p53 tumor suppressor acts in transcription, apoptosis, and cell cycle arrest. Yet, replication-mediated genomic instability is integral to oncogenesis, and p53 mutations promote tumor progression and drug-resistance. By delineating human and murine separation-of-function p53 alleles, we find that p53 null and gain-of-function (GOF) mutations exhibit defects in restart of stalled or damaged DNA replication forks that drive genomic instability, which isgenetically separable from transcription activation. By assaying protein-DNA fork interactions in single cells, we unveil a p53-MLL3-enabled recruitment of MRE11 DNA replication restart nuclease. Importantly, p53 defects or depletion unexpectedly allow mutagenic RAD52 and POLθ pathways to hijack stalled forks, which we find reflected in p53 defective breast-cancer patient COSMIC mutational signatures. These data uncover p53 as a keystone regulator of replication homeostasis within a DNA restart network. Mechanistically, this has important implications for development of resistance in cancer therapy. Combined, these results define an unexpected role for p53-mediated suppression of replication genome instability.


Asunto(s)
Replicación del ADN , ADN Polimerasa Dirigida por ADN/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Resistencia a Antineoplásicos , Inestabilidad Genómica , Homeostasis , Humanos , Ratones , Mutación , Proteína p53 Supresora de Tumor/genética , ADN Polimerasa theta
7.
Nat Cell Biol ; 18(11): 1185-1195, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27723720

RESUMEN

The ATR checkpoint kinase coordinates cellular responses to DNA replication stress. Budding yeast contain three activators of Mec1 (the ATR orthologue); however, only TOPBP1 is known to activate ATR in vertebrates. We identified ETAA1 as a replication stress response protein in two proteomic screens. ETAA1-deficient cells accumulate double-strand breaks, sister chromatid exchanges, and other hallmarks of genome instability. They are also hypersensitive to replication stress and have increased frequencies of replication fork collapse. ETAA1 contains two RPA-interaction motifs that localize ETAA1 to stalled replication forks. It also interacts with several DNA damage response proteins including the BLM/TOP3α/RMI1/RMI2 and ATR/ATRIP complexes. It binds ATR/ATRIP directly using a motif with sequence similarity to the TOPBP1 ATR-activation domain; and like TOPBP1, ETAA1 acts as a direct ATR activator. ETAA1 functions in parallel to the TOPBP1/RAD9/HUS1/RAD1 pathway to regulate ATR and maintain genome stability. Thus, vertebrate cells contain at least two ATR-activating proteins.


Asunto(s)
Antígenos de Superficie/metabolismo , Replicación del ADN/genética , Inestabilidad Genómica/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Antígenos de Superficie/genética , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Daño del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Genoma Humano , Humanos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteómica/métodos , Transducción de Señal/genética
8.
DNA Repair (Amst) ; 35: 55-62, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26454783

RESUMEN

Proper DNA replication is critical to maintain genome stability. When the DNA replication machinery encounters obstacles to replication, replication forks stall and the replication stress response is activated. This response includes activation of cell cycle checkpoints, stabilization of the replication fork, and DNA damage repair and tolerance mechanisms. Defects in the replication stress response can result in alterations to the DNA sequence causing changes in protein function and expression, ultimately leading to disease states such as cancer. To identify additional genes that control the replication stress response, we performed a three-parameter, high content, whole genome siRNA screen measuring DNA replication before and after a challenge with replication stress as well as a marker of checkpoint kinase signalling. We identified over 200 replication stress response genes and subsequently analyzed how they influence cellular viability in response to replication stress. These data will serve as a useful resource for understanding the replication stress response.


Asunto(s)
Daño del ADN , Replicación del ADN/genética , Genoma Humano/genética , Interferencia de ARN , ARN Interferente Pequeño/genética , Línea Celular Tumoral , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Reparación del ADN , ADN de Cadena Simple/genética , Inestabilidad Genómica , Genómica , Humanos , Microscopía Fluorescente , Proteínas Quinasas/metabolismo
9.
PLoS One ; 10(5): e0125482, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25965342

RESUMEN

The DNA damage response kinase ATR may be a useful cancer therapeutic target. ATR inhibition synergizes with loss of ERCC1, ATM, XRCC1 and DNA damaging chemotherapy agents. Clinical trials have begun using ATR inhibitors in combination with cisplatin. Here we report the first synthetic lethality screen with a combination treatment of an ATR inhibitor (ATRi) and cisplatin. Combination treatment with ATRi/cisplatin is synthetically lethal with loss of the TLS polymerase ζ and 53BP1. Other DNA repair pathways including homologous recombination and mismatch repair do not exhibit synthetic lethal interactions with ATRi/cisplatin, even though loss of some of these repair pathways sensitizes cells to cisplatin as a single-agent. We also report that ATRi strongly synergizes with PARP inhibition, even in homologous recombination-proficient backgrounds. Lastly, ATR inhibitors were able to resensitize cisplatin-resistant cell lines to cisplatin. These data provide a comprehensive analysis of DNA repair pathways that exhibit synthetic lethality with ATR inhibitors when combined with cisplatin chemotherapy, and will help guide patient selection strategies as ATR inhibitors progress into the cancer clinic.


Asunto(s)
Antineoplásicos/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Cisplatino/farmacología , Reparación del ADN/efectos de los fármacos , Pirazinas/farmacología , Sulfonas/farmacología , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , ADN Polimerasa Dirigida por ADN , Resistencia a Antineoplásicos/efectos de los fármacos , Sinergismo Farmacológico , Biblioteca de Genes , Células HCT116 , Humanos , Péptidos y Proteínas de Señalización Intracelular , ARN Interferente Pequeño/metabolismo , Proteína 1 de Unión al Supresor Tumoral P53
10.
PLoS One ; 9(6): e99397, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24901225

RESUMEN

Subcellular localization, protein interactions, and post-translational modifications regulate the DNA damage response kinases ATR, ATM, and DNA-PK. During an analysis of putative ATR phosphorylation sites, we found that a single mutation at S1333 creates a hyperactive kinase. In vitro and in cells, mutation of S1333 to alanine (S1333A-ATR) causes elevated levels of kinase activity with and without the addition of the protein activator TOPBP1. S1333 mutations to glycine, arginine, or lysine also create a hyperactive kinase, while mutation to aspartic acid decreases ATR activity. S1333A-ATR maintains the G2 checkpoint and promotes completion of DNA replication after transient exposure to replication stress but the less active kinase, S1333D-ATR, has modest defects in both of these functions. While we find no evidence that S1333 is phosphorylated in cultured cells, our data indicate that small changes in the HEAT repeats can have large effects on kinase activity. These mutants may serve as useful tools for future studies of the ATR pathway.


Asunto(s)
Serina/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Proteínas de la Ataxia Telangiectasia Mutada/química , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteínas Portadoras/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Replicación del ADN/efectos de los fármacos , Replicación del ADN/efectos de la radiación , Proteínas de Unión al ADN/metabolismo , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de la radiación , Células HCT116 , Células HEK293 , Humanos , Hidroxiurea/farmacología , Datos de Secuencia Molecular , Proteínas Nucleares/metabolismo , Fosforilación/efectos de los fármacos , Fosforilación/efectos de la radiación , Unión Proteica , Proteínas Quinasas/metabolismo , Estructura Secundaria de Proteína , Radiación Ionizante , Transducción de Señal/efectos de los fármacos , Transducción de Señal/efectos de la radiación , Rayos Ultravioleta
11.
J Med Chem ; 57(6): 2455-61, 2014 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-24491171

RESUMEN

Stapled helix peptides can serve as useful tools for inhibiting protein-protein interactions but can be difficult to optimize for affinity. Here we describe the discovery and optimization of a stapled helix peptide that binds to the N-terminal domain of the 70 kDa subunit of replication protein A (RPA70N). In addition to applying traditional optimization strategies, we employed a novel approach for efficiently designing peptides containing unnatural amino acids. We discovered hot spots in the target protein using a fragment-based screen, identified the amino acid that binds to the hot spot, and selected an unnatural amino acid to incorporate, based on the structure-activity relationships of small molecules that bind to this site. The resulting stapled helix peptide potently and selectively binds to RPA70N, does not disrupt ssDNA binding, and penetrates cells. This peptide may serve as a probe to explore the therapeutic potential of RPA70N inhibition in cancer.


Asunto(s)
Péptidos/síntesis química , Péptidos/farmacología , Proteína de Replicación A/metabolismo , Alanina/metabolismo , Secuencia de Aminoácidos , Línea Celular , Cristalización , Cristalografía por Rayos X , ADN de Cadena Simple/metabolismo , Descubrimiento de Drogas , Ensayo de Cambio de Movilidad Electroforética , Polarización de Fluorescencia , Espectroscopía de Resonancia Magnética , Microscopía Fluorescente , Modelos Moleculares , Datos de Secuencia Molecular , Penetrancia , Péptidos/metabolismo , Conformación Proteica , Proteína de Replicación A/efectos de los fármacos , Relación Estructura-Actividad , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/metabolismo
13.
J Clin Invest ; 123(7): 3112-23, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23921131

RESUMEN

Histone deacetylase 3 (HDAC3) contributes to the regulation of gene expression, chromatin structure, and genomic stability. Because HDAC3 associates with oncoproteins that drive leukemia and lymphoma, we engineered a conditional deletion allele in mice to explore the physiological roles of Hdac3 in hematopoiesis. We used the Vav-Cre transgenic allele to trigger recombination, which yielded a dramatic loss of lymphoid cells, hypocellular bone marrow, and mild anemia. Phenotypic and functional analysis suggested that Hdac3 was required for the formation of the earliest lymphoid progenitor cells in the marrow, but that the marrow contained 3-5 times more multipotent progenitor cells. Hdac3(-/-) stem cells were severely compromised in competitive bone marrow transplantation. In vitro, Hdac3(-/-) stem and progenitor cells failed to proliferate, and most cells remained undifferentiated. Moreover, one-third of the Hdac3(-/-) stem and progenitor cells were in S phase 2 hours after BrdU labeling in vivo, suggesting that these cells were impaired in transit through the S phase. DNA fiber-labeling experiments indicated that Hdac3 was required for efficient DNA replication in hematopoietic stem and progenitor cells. Thus, Hdac3 is required for the passage of hematopoietic stem/progenitor cells through the S phase, for stem cell functions, and for lymphopoiesis.


Asunto(s)
Replicación del ADN , Células Madre Hematopoyéticas/enzimología , Histona Desacetilasas/fisiología , Animales , Células de la Médula Ósea/fisiología , Trasplante de Médula Ósea , Diferenciación Celular , Proliferación Celular , Células Cultivadas , Células Madre Hematopoyéticas/fisiología , Linfopoyesis , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fase S , Bazo/patología , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA