Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
New Phytol ; 242(3): 1113-1130, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38418427

RESUMEN

Leaf development is a multifaceted and dynamic process orchestrated by a myriad of genes to shape the proper size and morphology. The dynamic genetic network underlying leaf development remains largely unknown. Utilizing a synergistic genetic approach encompassing dynamic genome-wide association study (GWAS), time-ordered gene co-expression network (TO-GCN) analyses and gene manipulation, we explored the temporal genetic architecture and regulatory network governing leaf development in Populus. We identified 42 time-specific and 18 consecutive genes that displayed different patterns of expression at various time points. We then constructed eight TO-GCNs that covered the cell proliferation, transition, and cell expansion stages of leaf development. Integrating GWAS and TO-GCN, we postulated the functions of 27 causative genes for GWAS and identified PtoGRF9 as a key player in leaf development. Genetic manipulation via overexpression and suppression of PtoGRF9 revealed its primary influence on leaf development by modulating cell proliferation. Furthermore, we elucidated that PtoGRF9 governs leaf development by activating PtoHB21 during the cell proliferation stage and attenuating PtoLD during the transition stage. Our study provides insights into the dynamic genetic underpinnings of leaf development and understanding the regulatory mechanism of PtoGRF9 in this dynamic process.


Asunto(s)
Estudio de Asociación del Genoma Completo , Populus , Hojas de la Planta/anatomía & histología , Redes Reguladoras de Genes , Regulación de la Expresión Génica de las Plantas
2.
Plant Biotechnol J ; 21(10): 2002-2018, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37392407

RESUMEN

Heterozygous alleles are widespread in outcrossing and clonally propagated woody plants. The variation in heterozygosity that underlies population adaptive evolution and phenotypic variation, however, remains largely unknown. Here, we describe a de novo chromosome-level genome assembly of Populus tomentosa, an economic and ecologically important native tree in northern China. By resequencing 302 natural accessions, we determined that the South subpopulation (Pop_S) encompasses the ancestral strains of P. tomentosa, while the Northwest subpopulation (Pop_NW) and Northeast subpopulation (Pop_NE) experienced different selection pressures during population evolution, resulting in significant population differentiation and a decrease in the extent of heterozygosity. Analysis of heterozygous selective sweep regions (HSSR) suggested that selection for lower heterozygosity contributed to the local adaptation of P. tomentosa by dwindling gene expression and genetic load in the Pop_NW and Pop_NE subpopulations. Genome-wide association studies (GWAS) revealed that 88 single nucleotide polymorphisms (SNPs) within 63 genes are associated with nine wood composition traits. Among them, the selection for the homozygous AA allele in PtoARF8 is associated with reductions in cellulose and hemicellulose contents by attenuating PtoARF8 expression, and the increase in lignin content is attributable to the selection for decreases in exon heterozygosity in PtoLOX3 during adaptive evolution of natural populations. This study provides novel insights into allelic variations in heterozygosity associated with adaptive evolution of P. tomentosa in response to the local environment and identifies a series of key genes for wood component traits, thereby facilitating genomic-based breeding of important traits in perennial woody plants.


Asunto(s)
Populus , Alelos , Populus/genética , Populus/metabolismo , Madera/genética , Madera/metabolismo , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Polimorfismo de Nucleótido Simple/genética , Genómica
3.
Plant Cell Environ ; 46(2): 479-497, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36385613

RESUMEN

Little information is known about DNA methylation variation in shaping environment-specific drought resistance and resilience for tree adaptation. In this study, we leveraged RNA sequencing and whole-genome bisulfite sequencing data to dissect the distinction of epigenetic regulation under drought stress and rewater condition of Populus tomentosa accessions from three geographical regions. We demonstrated low resistance and high resilience for accessions from South. Non-CG methylation levels in promoter regions of Southern accessions were lower than accessions from higher latitudes and negatively regulated gene expression. CHH context methylation was more sensitive to drought stress, and the geographical-specific differentially methylated regions were scarcely changed by environmental fluctuation. We identified 60 conserved hub genes within the co-expression networks that correlate with photosynthetic and stomatal morphological traits. Epigenome-wide association studies and genome-wide association studies of these 60 hub genes revealed the interdependency between genetic and epigenetic variation in GATA9 and LECRK-VIII.2, which was associated with stomatal morphology and chlorophyll content. The natural epigenetic variation in GATA9 was also faithfully transmitted to progenies in two family-based F1 populations. This study indicates a functional relationship of DNA methylation diversity with drought resistance and resilience which offers new insights into plants' local adaptation to a stressful environment.


Asunto(s)
Metilación de ADN , Populus , Metilación de ADN/genética , Epigénesis Genética , Populus/genética , Resistencia a la Sequía , Estudio de Asociación del Genoma Completo
4.
Int J Mol Sci ; 22(17)2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34502156

RESUMEN

The stem lenticel is a highly specialized tissue of woody plants that has evolved to balance stem water retention and gas exchange as an adaptation to local environments. In this study, we applied genome-wide association studies and selective sweeping analysis to characterize the genetic architecture and genome-wide adaptive signatures underlying stem lenticel traits among 303 unrelated accessions of P. tomentosa, which has significant phenotypic and genetic variations according to climate region across its natural distribution. In total, we detected 108 significant single-nucleotide polymorphisms, annotated to 88 candidate genes for lenticel, of which 9 causative genes showed significantly different selection signatures among climate regions. Furthermore, PtoNAC083 and PtoMYB46 showed significant association signals and abiotic stress response, so we overexpressed these two genes in Arabidopsis thaliana and found that the number of stem cells in all three overexpression lines was significantly reduced by PtoNAC083 overexpression but slightly increased by PtoMYB46 overexpression, suggesting that both genes are involved in cell division and expansion during lenticel formation. The findings of this study demonstrate the successful application of an integrated strategy for dissecting the genetic basis and landscape genetics of complex adaptive traits, which will facilitate the molecular design of tree ideotypes that may adapt to future climate and environmental changes.


Asunto(s)
Adaptación Biológica/genética , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Estudio de Asociación del Genoma Completo , Tallos de la Planta/genética , Populus/genética , Carácter Cuantitativo Heredable , Alelos , Variación Biológica Poblacional , Epigénesis Genética , Frecuencia de los Genes , Estudios de Asociación Genética , Fenotipo , Polimorfismo de Nucleótido Simple
5.
Appl Microbiol Biotechnol ; 104(19): 8427-8437, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32813067

RESUMEN

Infectious bronchitis virus (IBV) is a member of genus gamma-coronavirus in the family Coronaviridae, causing serious economic losses to the poultry industry. Reverse genetics is a common technique to study the biological characteristics of viruses. So far, there is no BAC reverse genetic system available for rescue of IBV infectious clone. In the present study, a new strategy for the construction of IBV infectious cDNA clone was established. The full-length genomic cDNA of IBV vaccine strain H120 was constructed in pBAC vector from four IBV fragment subcloning vectors by homologous recombination, which contained the CMV promoter at the 5' end and the hepatitis D virus ribozyme (HDVR) sequence and bovine growth hormone polyadenylation (BGH) sequence after the polyA tail at the 3' end of the full-length cDNA. Subsequently, using the same technique, another plasmid pBAC-H120/SCS1 was also constructed, in which S1 gene from IBV H120 strain was replaced with that of a virulent SC021202 strain. Recombinant virus rH120 and rH120/SCS1 were rescued by transfecting the plasmids into BHK cells and passaged in embryonated chicken eggs. Finally, the pathogenicity of both the recombinant virus strains rH120 and rH120/SCS1 was evaluated in SPF chickens. The results showed that the chimeric rH120/SCS1 strain was not pathogenic compared with the wild-type IBV SC021202 strain and the chickens inoculated with rH120/SCS1 could resist challenge infection by IBV SC021202. Taken together, our results indicate that BAC reverse genetic system could be used to rescue IBV in vitro and IBV S1 protein alone might not be the key factor for IBV pathogenicity. KEY POINTS: • BAC vector was used to construct IBV full-length cDNA by homologous recombination. • Based on four subcloning vectors, a recombinant chimeric IBV H120/SCS1 was constructed and rescued. • Pathogenicity of H120/SCS1 was similar to that of H120, but different to that of SC021202.


Asunto(s)
Virus de la Bronquitis Infecciosa/genética , Virus de la Bronquitis Infecciosa/patogenicidad , Proteínas Virales/genética , Animales , Embrión de Pollo , Pollos , Infecciones por Coronavirus/veterinaria , ADN Complementario , Recombinación Homóloga , Enfermedades de las Aves de Corral/virología , Proteínas Recombinantes/genética , Vacunas Virales/genética , Vacunas Virales/inmunología , Virulencia/genética
6.
Front Microbiol ; 11: 1630, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32765462

RESUMEN

Although infectious bronchitis virus (IBV) is the first coronavirus identified, little is known about which membrane protein of host cells could interact with IBV spike protein and facilitate the infection by the virus. In this study, by using a monoclonal antibody to the S1 protein of IBV M41 strain, we found that heat shock protein member 8 (HSPA8) could interact with spike protein of IBV. HSPA8 was found to be present on the cell membrane and chicken tissues, with highest expression level in the kidney. Results of co-IP and GST-pull-down assays indicated that the receptor binding domain (RBD) of IBV M41 could interact with HSPA8. The results of binding blocking assay and infection inhibition assay showed that recombinant protein HSPA8 and antibody to HSPA8 could inhibit IBV M41 infection of chicken embryonic kidney (CEK) cells. Further, we found that HSPA8 interacted with the N-terminal 19-272 amino acids of S1 of IBV Beaudette, H120 and QX strains and HSPA8 from human and pig also interacted with IBV M41-RBD. Finally the results of binding blocking assay and infection inhibition assay showed that recombinant HSPA8 protein and antibody to HSPA8 could inhibit IBV Beaudette strain infection of Vero cells that were treated with heparanase to remove heparan sulfate from the cell surface. Taken together, our results indicate that HSPA8 is a novel host factor involved in IBV infection.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA