Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Xray Sci Technol ; 32(3): 529-547, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38669511

RESUMEN

BACKGROUND: Photon-counting computed tomography (Photon counting CT) utilizes photon-counting detectors to precisely count incident photons and measure their energy. These detectors, compared to traditional energy integration detectors, provide better image contrast and material differentiation. However, Photon counting CT tends to show more noticeable ring artifacts due to limited photon counts and detector response variations, unlike conventional spiral CT. OBJECTIVE: To comprehensively address this issue, we propose a novel feature shared multi-decoder network (FSMDN) that utilizes complementary learning to suppress ring artifacts in Photon counting CT images. METHODS: Specifically, we employ a feature-sharing encoder to extract context and ring artifact features, facilitating effective feature sharing. These shared features are also independently processed by separate decoders dedicated to the context and ring artifact channels, working in parallel. Through complementary learning, this approach achieves superior performance in terms of artifact suppression while preserving tissue details. RESULTS: We conducted numerous experiments on Photon counting CT images with three-intensity ring artifacts. Both qualitative and quantitative results demonstrate that our network model performs exceptionally well in correcting ring artifacts at different levels while exhibiting superior stability and robustness compared to the comparison methods. CONCLUSIONS: In this paper, we have introduced a novel deep learning network designed to mitigate ring artifacts in Photon counting CT images. The results illustrate the viability and efficacy of our proposed network model as a new deep learning-based method for suppressing ring artifacts.


Asunto(s)
Artefactos , Fantasmas de Imagen , Fotones , Tomografía Computarizada por Rayos X , Tomografía Computarizada por Rayos X/métodos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Aprendizaje Profundo , Algoritmos
2.
Crit Rev Food Sci Nutr ; 63(20): 4757-4784, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-34898343

RESUMEN

Tea flavonoids are widely recognized as critical flavor contributors and crucial health-promoting bioactive compounds, and have long been the focus of research worldwide in food science. The aim of this review paper is to summarize the major progress in tea flavonoid chemistry, their dynamics of constituents and concentrations during tea processing as well as storage, and their health functions studied between 2001 and 2021. Moreover, the utilization of tea flavonoids in the human body has also been discussed for a detailed understanding of their uptake, metabolism, and interaction with the gut microbiota. Many novel tea flavonoids have been identified, including novel A- and B-ring substituted flavan-3-ol derivatives, condensed and oxidized flavan-3-ol derivatives, and glycosylated and methylated flavonoids, and are found to be closely associated with the characteristic color, flavor, and health benefits of tea. Flavoalkaloids exist widely in various teas, particularly 8-C N-ethyl-2-pyrrolidinone-substituted flavan-3-ols. Tea flavonoids behave significantly difference in constituents and concentrations depending on tea cultivars, plantation conditions, multiple stresses, the tea-specified manufacturing steps, and even the long-term storage period. Tea flavonoids exhibit multiple health-promoting effects, particularly their anti-inflammatory in alleviating metabolic syndromes. Interaction of tea flavonoids with the gut microbiota plays vital roles in their health function.


Asunto(s)
Camellia sinensis , , Humanos , Té/química , Camellia sinensis/química , Flavonoides/análisis
3.
Compr Rev Food Sci Food Saf ; 22(3): 1686-1721, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36856036

RESUMEN

The functional components in tea confer various potential health benefits to humans. To date, several special tea products featuring functional components (STPFCs) have been successfully developed, such as O-methylated catechin-rich tea, γ-aminobutyric acid-rich tea, low-caffeine tea, and selenium-rich tea products. STPFCs have some unique and enhanced health benefits when compared with conventional tea products, which can meet the specific needs and preferences of different groups and have huge market potential. The processing strategies to improve the health benefits of tea products by regulating the functional component content have been an active area of research in food science. The fresh leaves of some specific tea varieties rich in functional components are used as raw materials, and special processing technologies are employed to prepare STPFCs. Huge progress has been achieved in the research and development of these STPFCs. However, the current status of these STPFCs has not yet been systematically reviewed. Here, studies on STPFCs have been comprehensively reviewed with a focus on their potential health benefits and processing strategies. Additionally, other chemical components with the potential to be developed into special teas and the application of tea functional components in the food industry have been discussed. Finally, suggestions on the promises and challenges for the future study of these STPFCs have been provided. This paper might shed light on the current status of the research and development of these STPFCs. Future studies on STPFCs should focus on screening specific tea varieties, identifying new functional components, evaluating health-promoting effects, improving flavor quality, and elucidating the interactions between functional components.


Asunto(s)
Camellia sinensis , Catequina , Humanos , Té/química , Camellia sinensis/química , Cafeína/análisis , Catequina/análisis , Catequina/química , Antioxidantes/química
4.
Sensors (Basel) ; 21(14)2021 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-34300567

RESUMEN

In an autonomous vehicle, the lane following algorithm is an important component, which is a basic function of autonomous driving. However, the existing lane following system has a few shortcomings: first, the control method it adopts requires an accurate system model, and different vehicles have different parameters, which needs a lot of parameter calibration work. The second is that it may fail on road sections where the lateral acceleration requirements of vehicles are large, such as large curves. Third, its decision-making system is defined based on rules, which has disadvantages: it is difficult to formulate; human subjective factors cannot guarantee objectivity; coverage is difficult to guarantee. In recent years, the deep deterministic policy gradient (DDPG) algorithm has been widely used in the field of autonomous driving due to its strong nonlinear fitting ability and generalization performance. However, the DDPG algorithm has overestimated state action values and large cumulative errors, low training efficiency and other issues. Therefore, this paper improves the DDPG algorithm based on the double critic networks and priority experience replay mechanism. Then this paper proposes a lane following method based on this algorithm. Experiment shows that the algorithm can achieve excellent following results under various road conditions.


Asunto(s)
Accidentes de Tránsito , Conducción de Automóvil , Algoritmos , Calibración , Humanos , Políticas
5.
J Sci Food Agric ; 98(3): 1153-1161, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28734044

RESUMEN

BACKGROUND: Green tea and black tea are manufactured using appropriate tea cultivars in China. However, the metabolite differences relating to the manufacturing suitability of tea cultivars are unclear. In the present study, we performed a non-targeted metabolomic analysis on 13 Chinese tea cultivars using ultra-high performance liquid chromatography coupled with quadrupole-time-of-flight mass spectrometry to investigate comprehensively the metabolite differences between cultivars suitable for manufacturing green tea (GT cultivars) and cultivars suitable for manufacturing both green tea and black tea (G&BT cultivars). RESULTS: Multivariate statistical analysis and cluster analysis divided the 13 cultivars into two groups, namely GT cultivars and G&BT cultivars, which correlated with their manufacturing suitability. The GT cultivars contained higher levels of flavonoid glycosides, whereas the G&BT cultivars contained higher levels of catechins, dimeric catechins, phenolic acids and alkaloids. CONCLUSION: Metabolic pathway analysis revealed that the flavonoid pathway inclined toward the synthesis of flavonoid glycosides in GT cultivars, whereas it inclined toward the synthesis of catechins and phenolic acids in G&BT cultivars. The results of the present study will be helpful for discriminating the manufacturing suitability of tea cultivars and investigating their breeding. © 2017 Society of Chemical Industry.


Asunto(s)
Camellia sinensis/química , Extractos Vegetales/química , Alcaloides/análisis , Alcaloides/metabolismo , Camellia sinensis/clasificación , Camellia sinensis/metabolismo , Catequina/análisis , Catequina/metabolismo , China , Cromatografía Líquida de Alta Presión , Glicósidos/análisis , Glicósidos/metabolismo , Espectrometría de Masas , Metabolómica , Extractos Vegetales/metabolismo
6.
BMC Plant Biol ; 15: 233, 2015 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-26420557

RESUMEN

BACKGROUND: Tea (Camellia sinensis) has long been consumed worldwide for its amazing flavor and aroma. Methyl jasmonate (MeJA), which acts as an effective elicitor among the plant kingdom, could mostly improve the quality of tea aroma by promoting flavor volatiles in tea leaves. Although a variety of volatile secondary metabolites that contribute to aroma quality have been identified, our understanding of the biosynthetic pathways of these compounds has remained largely incomplete. Therefore, information aboaut the transcriptome of tea leaves and, specifically, details of any changes in gene expression in response to MeJA, is required for a better understanding of the biological mechanisms of MeJA-mediated volatiles biosynthesis. Moreover, MeJA treatment could exaggerate the responses of secondary metabolites and some gene expression which offer a better chance to figure out the mechanism. RESULTS: The results of two-dimensional gas-chromatograph mass-spectrometry showed that the terpenoids content in MeJA-treated tea leaves increased, especially linalool, geraniol, and phenylethyl alcohol. More importantly, we carried out RNA-seq to identify the differentially expressed genes (DEGs) related to volatiles biosynthesis pathways induced by MeJA treatment (0 h, 12 h, 24 h and 48 h) in tea leaves. We identified 19245, 18614, 11890 DEGs respectively in the MeJA_12h, MeJA_24 h and MeJA_48 h samples. The α-Lenolenic acid degradation pathway was firstly responded resulting in activating the JA-pathway inner tea leaves, and the MEP/DOXP pathway significantly exaggerated. Notably, the expression level of jasmonate O-methyltransferase, which is associated with the central JA biosynthesis pathway, was increased by 7.52-fold in MeJA_24 h tea leaves. Moreover, the genes related to the terpenoid backbone biosynthesis pathway showed different expression patterns compared with the untreated leaves. The expression levels of 1-deoxy-D-xylulose-phosphate synthase (DXS), all-trans-nonaprenyl-diphosphate synthase, geranylgeranyl reductase, geranylgeranyl diphosphate synthase (type II), hydroxymethylglutaryl-CoA reductase and 4-hydroxy-3-methylbut-2-enyl diphosphate reductase increased by approximately 2-4-fold. CONCLUSIONS: The results of two-dimension gas-chromatography mass-spectrometry analysis suggested that exogenous application of MeJA could induce the levels of volatile components in tea leaves, especially the geraniol, linalool and its oxides. Moreover, the transcriptome analysis showed increased expression of genes in α-Lenolenic acid degradation pathway which produced massive jasmonic acid and quickly activated holistic JA-pathway inner tea leaves, also the terpenoid backbones biosynthesis pathway was significantly affected after MeJA treatment. In general, MeJA could greatly activate secondary metabolism pathways, especially volatiles. The results will deeply increase our understanding of the volatile metabolites biosynthesis pathways of tea leaves in response to MeJA.


Asunto(s)
Camellia sinensis/genética , Camellia sinensis/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Terpenos/metabolismo , Acetatos/farmacología , Ciclopentanos/farmacología , Cromatografía de Gases y Espectrometría de Masas , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Datos de Secuencia Molecular , Oxilipinas/farmacología , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/metabolismo , Análisis de Secuencia de ADN , Transcriptoma , Compuestos Orgánicos Volátiles/metabolismo
7.
Cell Tissue Res ; 361(2): 541-55, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25684031

RESUMEN

The NLRP3/caspase-1 inflammasome pathway plays an important role in cellular immune defence against bacterial infection; however, its function in human dental pulp tissue and human dental pulp fibroblasts remains poorly understood. We demonstrate that NLRP3 protein expression occurs to a greater extent in pulp tissue with irreversible pulpitis than in normal pulp tissue and in tissue with reversible pulpitis. Caspase-1 is present in its active (cleaved) form only in pulp tissue with irreversible pulpitis. NLRP3 and caspase-1 are expressed in the odontoblast layers in normal human dental pulp tissue, whereas in inflamed pulp tissue, the odontoblast layers are disrupted and dental pulp cells are positive for NLRP3 and caspase-1. Additionally, we investigate the role of the NLRP3/caspase-1 inflammasome pathway in human dental pulp fibroblasts and show that ATP activates the P2X7 receptor on the cell membrane triggering K(+) efflux and inducing the gradual recruitment of the membrane pore pannexin-1. Extracellular lipopolysaccharide is able to penetrate the cytosol and activate NLRP3. Furthermore, the low intracellular K(+) concentration in the cytosol triggers reactive oxygen species generation, which also induces the NLRP3 inflammasome. Thus, the NLRP3/caspase-1 pathway has a biological role in the innate immune response mounted by human dental pulp fibroblasts.


Asunto(s)
Proteínas Portadoras/inmunología , Caspasa 1/inmunología , Pulpa Dental/citología , Pulpa Dental/inmunología , Fibroblastos/inmunología , Inflamasomas/inmunología , Adenosina Trifosfato/inmunología , Adolescente , Proteínas Portadoras/análisis , Caspasa 1/análisis , Células Cultivadas , Humanos , Inmunidad Innata , Inflamasomas/análisis , Inflamación/inmunología , Interleucina-1beta/análisis , Interleucina-1beta/inmunología , Lipopolisacáridos/inmunología , Proteína con Dominio Pirina 3 de la Familia NLR , Especies Reactivas de Oxígeno/inmunología , Receptores Purinérgicos P2X7/análisis , Receptores Purinérgicos P2X7/inmunología , Adulto Joven
8.
Wei Sheng Wu Xue Bao ; 55(11): 1409-17, 2015 Nov 04.
Artículo en Zh | MEDLINE | ID: mdl-26915222

RESUMEN

OBJECTIVE: To study the repair mechanisms of frozen sublethally damaged Staphylococcus aurous cells. METHODS: We resuscitated frozen sublethally damaged S. aureus at 37 degrees C for different time within 3 h. Meanwhile, we compared the morphological changes of the frozen sublethally damaged cells after 1 h of resuscitation using transmission electron microscopy assay (TEM). The expressions of the transcriptional attenuator MsrR (msrR), iron (Fe3+) ABC transporter ATP-binding protein (fhuC), and cytochrome b (cytB) genes were quantitatively analyzed by real-time fluorescence quantitative PCR (Real-time PCR) method. The content of cells outside leakage, active oxygen (ROS), and superoxide dismutase (SOD) activity were also determined by ultraviolet spectrophotometry. RESULTS: More than 99% of the frozen sublethally damaged S. aureus repaired after 3 h. The resuscitated cells expressed an equal resistance to high concentration of NaCl. Real-time PCR results showed that the msrR and fhuC genes expressions were down-regulated, whereas the cytB gene expression was up-regulated significantly. The frozen sublethally damaged S. aureus cellar surface ultrastructure significant changed during resuscitation. The cell surface became compact and sturdy from smooth and transparent. The cell leakage rate of ultraviolet absorption material gradually decreased. Meanwhile, the intracellular ROS level declined along with the decrease of SOD activity. CONCLUSION: Frozen sublethally damaged cells may regain the capability of resistance to high salt stress by repairing cell membrane integrity, reducing the content of ROS through gene regulation, inhibiting the toxicity of active oxygen to the cells. Meanwhile, the regulation of metabolism related genes (cytB) provides the energy for the requirement of cells, therefore, the frozen sublethally damaged cells were repaired finally.


Asunto(s)
Staphylococcus aureus/química , Staphylococcus aureus/crecimiento & desarrollo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Congelación , Regulación Bacteriana de la Expresión Génica , Viabilidad Microbiana , Especies Reactivas de Oxígeno/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo
9.
Food Res Int ; 175: 113713, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38128982

RESUMEN

Strip/needle green teas (SGT/NGT) processed using innovative technologies are in high demand; however, mechanisms behind their color and flavor have not been comprehensively studied. We aimed to reveal the dynamics of major pigmented components (carotenoids, lipids, flavonoids, and Maillard products) and their contributions to the flavor of green teas. The total content of flavonoids in SGT and NGT were 255 ± 4.51 and 201 ± 3.91 mg·g-1, respectively; these values are slightly lower than that in fresh leaves (FLs), resulting in a fresh and sweet aftertaste. In average, carotene content in SGT/NGT (24.8 µg·g-1) was higher than in FL (17.4 µg·g-1), whilst xanthophyll content (603 µg·g-1) decreased to one-half of that in FL (310 µg·g-1). Among the 218 primary metabolites, glutamine, glutamic acid, and arginine were found to accumulate and were dominate contributors for the umami and sweet taste. Notably, more than 96 volatiles were screened and revealed their correlations with carotenoids, lipids, and amino acids. Overall, the synergism between pigments and their non-enzymatic derivates' contribution to GT characterized flavor was illustrated.


Asunto(s)
Camellia sinensis , , Té/química , Camellia sinensis/química , Flavonoides/análisis , Carotenoides , Lípidos
10.
J Agric Food Chem ; 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38607252

RESUMEN

Glycosidically bound linalool plays important roles in the formation of excellent tea flavor, while their enantiomeric distribution in teas and the actual transformations with free linalool are still unclear. In this study, a novel chiral ultrahigh performance liquid chromatography-mass spectrometry/mass spectrometry approach to directly analyze linalyl-ß-primeveroside and linalyl-ß-d-glucopyranoside enantiomers in teas was established and then applied in 30 tea samples. A close transformation relationship existed between the two states of linalool for their consistent dominant configurations (most S-form) and corresponding distribution trend in most teas (r up to 0.81). The acidolysis characterization indicated that free linalool might be slowly released from linalyl-ß-primeveroside with stable enantiomeric ratios during long-term withering of white tea in a weakly acidic environment, along with other isomerized products, e.g., geraniol, nerol, α-terpineol, etc. Furthermore, a novel online thermal desorption-gas chromatography-mass spectrometry approach was established to simulate the pyrolysis releasing of linalyl-ß-primeveroside during tea processing. Interestingly, free linalool was not the selected pyrolysis product of linalyl-ß-primeveroside but rather trans/cis-2,6-dimethyl-2,6-octadiene during the high-fire roasting or baking step of oolong and green teas. The identification of above high-fire chemical marks presented great potential to scientifically evaluate the proper thermal conditions in the practical production of tea.

11.
Food Res Int ; 187: 114392, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763654

RESUMEN

Variations in cultivars and cultivation altitudes have significant impacts on tea flavour compounds however lack of comprehensive understanding. This study provided insights into differential accumulation of crucial flavour compounds in response to cultivars, cultivation altitudes, and processing. Twelve flavonoids (262.4 âˆ¼ 275.4 mg•g-1) and 20 amino acids (AAs) (56.5 âˆ¼ 64.8 mg•g-1) were comparative analyzed in 'Longjing 43' and 'Qunti' fresh leaves harvested at low (80 m, LA) and high (500 m, HA) altitudes. Additionally, an in-depth correlation unravelling of 31 alkaloids, 25 fatty acids, 31 saccharides, 8 organic acids, and 7 vitamins and flavonoids/AAs during green tea (GT) and black tea (BT) processing was performed. Enhenced flavonoid accumulation alongside higher AAs and saccharides in HA GT promoted a sweet/mellow flavour. Abundant flavonoids, AAs, and saccharides derivates in LA BT gave rise to a sweet aftertaste. The study presents an integrated illustration of major flavour compounds' differential accumulation patterns and their interrelations, providing new insights into the influence of cultivation conditions on tea flavour.


Asunto(s)
Altitud , Camellia sinensis , Flavonoides , Hojas de la Planta , , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Flavonoides/análisis , Té/química , Camellia sinensis/química , Camellia sinensis/crecimiento & desarrollo , Camellia sinensis/metabolismo , Gusto , Aminoácidos/análisis , Aminoácidos/metabolismo , Manipulación de Alimentos/métodos , Aromatizantes/análisis , Alcaloides/análisis , Alcaloides/metabolismo
12.
Food Chem ; 448: 139067, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38547713

RESUMEN

The Fujian and Yunnan provinces in China are the most representative origins of white tea. However, the key differences in the chemical constituents of the two white teas have rarely been revealed. In this study, a comprehensive comparison of the aroma profiles, chiral volatiles, and glycosidically bound volatiles (GBVs) in Fujian and Yunnan white teas was performed, and 174 volatiles and 28 enantiomers, including 22 volatiles and six GBVs, were identified. Linalool, linalyl-ß-primeveroside (LinPrim), and α-terpineol presented the opposite dominant configurations in Fujian and Yunnan white teas, and the chiral GBVs were firstly quantified with significant differences in the contents of R-LinPrim and ß-d-glucopyranosides of (2R, 5R)-linalool oxide A and (2R, 5S)-linalool oxide B. Moreover, discrimination functions for Fujian and Yunnan white teas were created using nine key variables with excellent reliability and efficiency. These results provide a new method for objectively distinguishing authentic white teas according to geographical origin.

13.
Food Chem ; 414: 135739, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-36827782

RESUMEN

Liu-pao tea (LPT) has unique aroma characteristics, and is a special microbial fermented tea produced using dark raw tea (LPM) as its raw material. In this study, stir bar sorptive extraction (SBSE) combined with gas chromatography-mass spectrometry (GC-MS) was applied to investigate the volatiles of 16 LPTs and 6 LPMs. Moreover, variations in volatile profiles between LPTs and LPMs were explored. Results showed that a total of 132 volatile compounds were identified from LPTs. The volatile fingerprint was constructed with a similarity ranged from 0.85 to 0.99. Furthermore, twenty-six aroma compounds were selected to depict the molecular aroma wheel of LPT. Multivariate statistical analysis revealed that the contents of 24 aroma compounds changed significantly (P < 0.05) when LPMs were processed into LPTs. These results reveal the volatile profiles of LPTs and aroma composition changes during microbial fermentation process, which might provide chemical basis of the aroma quality of LPT.


Asunto(s)
Odorantes , Compuestos Orgánicos Volátiles , Cromatografía de Gases y Espectrometría de Masas/métodos , Odorantes/análisis , Compuestos Orgánicos Volátiles/análisis , Análisis Multivariante , Té/química
14.
Food Res Int ; 169: 112891, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37254338

RESUMEN

Chiral volatiles play important roles in the formation of aroma quality of foods. To date, enantiomeric characteristics of chiral volatiles in Wuyi rock tea (WRT) and their aroma contributions are still unclear. In this study, an efficient enantioselective comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (Es-GC × GC-TOFMS) approach to separate and precisely quantitate 24 pairs of chiral volatiles in WRTs was established, and the enantiomeric distribution and aroma contribution of chiral volatiles among WRTs from four representative cultivars were investigated. Enantiomeric ratio (ER) of R-α-ionone (80%) in Dahongpao (DHP), ER of S-α-terpineol (57%) in Jinfo (JF), ERs of R-γ-heptanolactone (69%), S-γ-nonanolactone (55%), (2R, 5S)-theaspirane B (91%), concentration of S-(E)-nerolidol (313.37 ng/mL) in Rougui (RG) and concentration of R-α-ionone (33.01 ng/mL) in Shuixian (SX) were unique from other types of WRTs, which were considered as the potential chemical markers to distinguish WRT cultivars. The OAV assessment determined 7 volatile enantiomers as the aroma-active compounds, especially R-α-ionone and R-δ-octanolactone in SX, as well as S-(E)-nerolidol and (1R, 2R)-methyl jasmonate in RG contribute much to aroma formation of the corresponding WRTs. The above results provide scientific references for discrimination of tea cultivars and directed improvement of the aroma quality of WRT.


Asunto(s)
, Compuestos Orgánicos Volátiles , Té/química , Estereoisomerismo , Compuestos Orgánicos Volátiles/análisis
15.
Anal Chem ; 84(8): 3500-6, 2012 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-22458673

RESUMEN

We report herein the development of an ultrafast kinetic DNA hybridization assay system based on the visualization of threshold turbidity associated with the assembly of polystyrene nanospheres. Initial testing of our diagnostic protocol on a sequence associated with the anthrax lethal factor indicates that a visually identifiable, turbidity-definitive, and kinetic threshold state could be reached at a time as short as 1 min. The assay scheme allows for both target concentration quantification and differentiation of single base mismatches through registry of the threshold turbidity onset time. The positively charged environment on nanospheres not only contributes to expedited signal generation but also imparts cooperative DNA binding properties. The kinetic visual protocol complements conventionally used thermodynamic strategies and provides an entry point for the circumvention of assay issues associated with ill-defined thermodynamic end points.


Asunto(s)
ADN/química , Hibridación in Situ/métodos , Cinética , Nefelometría y Turbidimetría , Factores de Tiempo
17.
J Org Chem ; 77(1): 501-10, 2012 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-22142182

RESUMEN

A silver-mediated tandem protocol for the synthesis of quinolines involving the oxidative coupling/cyclization of N-arylimines and alkynes has been developed. We demonstrated that scenario-dependent metalation could occur either at the ortho C-H bond of an N-arylimine through protonation-driven enhancement of acidity or at the terminal C-H bond of an alkyne by virtue of the carbophilic π-acidity of silver. The diverse set of mechanistic manifolds implemented with a single type of experimental protocol points toward the importance of stringent reactivity analysis of each individual potentially reactive molecular site. Importantly, the direct arene C-H bond activation provides a unique and distinct mechanistic handle for the expansion of reactivity paradigms for silver. As expected, the protocol allows for the incorporation of both internal and terminal alkynes into the products, and in addition, both electron-withdrawing and -donating groups are tolerated on N-arylimines, thus enabling the vast expansion of substituent architectures on quinoline framework. Further, an intriguing phenomenon of structural isomerization and chemical bond cleavage has been observed for aliphatic internal alkynes.

18.
Curr Res Food Sci ; 5: 1098-1107, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35856056

RESUMEN

Pan-fried green tea (PGT) is an easily acceptable tea drink for general consumers. In this study, volatile profiles and characteristic aroma of 22 representative Chinese PGT samples were extracted using stir bar sorptive extraction (SBSE) and analysed by gas chromatography-mass spectrometry (GC-MS), gas chromatography-olfactometry (GC-O) analysis, and odour activity value (OAV) calculations. In total, 88 volatile compounds were identified. Alcohols (45%), esters (19%), and ketones (16%) were the dominant volatiles, and geraniol (484.8 µg/kg) was the most abundant volatile component in PGT, followed by trans-ß-ionone and linalool. In addition, the differences of aroma characteristics among PGT and other three types of green tea, namely baked green tea, steamed green tea, and sun-dried green tea, were also observed using partial least squares discriminant analysis (PLS-DA) and heatmap analysis, and it was found that ß-myrcene, methyl salicylate, (E)-nerolidol, geraniol, methyl jasmonate were generally present at higher content in PGT. This is the first comprehensive report describing the volatile profiles of Chinese PGT, and the findings from this study can advance our understanding of PGT aroma quality, and provide important theoretical basis for processing and quality control of green tea products.

19.
Food Chem ; 394: 133501, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-35728471

RESUMEN

In this study, we produced roasted, baked, steamed, and sun-dried green tea products using the same batch of fresh tea leaves (FTL) of Longjing 43 (Camellia sinensis var. sinensis), and explored processing effects on the metabolic profiles of four types of green teas (FGTs) using the widely targeted metabolomics. Results showed that 146 differential metabolites including flavonoids, amino acids, lipids, and phenolic acids were screened among 1034 non-volatiles. In addition, nineteen differential metabolites were screened among 79 volatiles. Most of non-volatiles and volatiles metabolites changed notably in different manufacturing processes, whereas there were no significant differences (p>0.05) in the levels of total catechins between FGTs and FTL. The transformation of metabolites was the dominant trend during green tea processing. The results contribute to a better understanding of how the manufacturing process influences green tea quality, and provide useful information for the enrichment of tea biochemistry theory.


Asunto(s)
Camellia sinensis , Catequina , Camellia sinensis/química , Catequina/análisis , Flavonoides/análisis , Metabolómica/métodos , Hojas de la Planta/química , Té/química
20.
Foods ; 11(24)2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36553850

RESUMEN

Wuyi rock tea (WRT) is one of the most famous subcategories of oolong tea, exhibiting distinct aroma characteristics with the application of different cultivars. However, a comprehensive comparison of the characteristic volatiles among WRTs with different cultivars has rarely been carried out. In this study, non-targeted analyses of volatile fragrant compounds (VFCs) and targeted aroma-active compounds in WRTs from four different cultivars were performed using chemometrics and gas chromatography olfactometry/mass spectrometry (GC-O/MS). A total of 166, 169, 166, and 169 VFCs were identified for Dahongpao (DHP), Rougui (RG), Shuixian (SX), and Jinfo (JF), respectively; and 40 components were considered as the key differential VFCs among WRTs by multivariate statistical analysis. Furthermore, 56 aroma-active compounds were recognized with predominant performances in "floral & fruity", "green & fresh", "roasted and caramel", "sweet", and "herbal" attributes. The comprehensive analysis of the chemometrics and GC-O/MS results indicated that methyl salicylate, p-cymene, 2,5-dimethylpyrazine, and 1-furfurylpyrrole in DHP; phenylethyl alcohol, phenethyl acetate, indole, and (E)-ß-famesene in RG; linalool, phenethyl butyrate, hexyl hexanoate, and dihydroactinidiolide in JF; and naphthalene in SX were the characteristic volatiles for each type of WRT. The obtained results provide a fundamental basis for distinguishing tea cultivars, recombination, and simulation of the WRT aroma.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA