Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Biochem ; 685: 115388, 2024 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-37967783

RESUMEN

The retrospective detection of organophosphorus nerve agents (OPNAs) exposure has been achieved by the off-site analysis of OPNA-human serum albumin (HSA) adducts using mass spectrometry-based detection approaches. However, few specific methods are accessible for on-site detection. To address this, a novel immunofluorescence microfluidic chip (IFMC) testing system combining europium chelated microparticle (EuCM) with self-driven microfluidic chip assay has been established to unambiguously determine soman (GD) and VX exposure within 20 min, respectively. The detection system was based on the principle of indirect competitive enzyme-linked immunosorbent assay. The specific monoclonal antibodies that respectively recognized the phosphonylated tyrosine 411 of GD-HSA and VX-HSA adducts were labeled by EuCM to capture corresponding adducts in the exposed samples. The phosphonylated peptides in the test line and goat-anti-rabbit antibody in the control line were utilized to bind the EuCM-labeled antibodies for signal exhibition. The developed IFMC chip could discriminatively detect exposed HSA adducts with high specificity, demonstrating a low limit of detection at exposure concentrations of 0.5 × 10-6 mol/L VX and 1.0 × 10-6 mol/L GD. The exposed serum samples can be qualitatively detected following an additional pretreatment procedure. This is a novel rapid detection system capable of discriminating GD and VX exposure, providing an alternative method for rapidly identifying OPNA exposure.


Asunto(s)
Soman , Animales , Humanos , Conejos , Soman/metabolismo , Europio , Microfluídica , Estudios Retrospectivos , Albúmina Sérica Humana , Técnica del Anticuerpo Fluorescente
2.
J Transl Med ; 21(1): 11, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36624463

RESUMEN

BACKGROUND: Radiotherapy (RT) is the standard treatment for nasopharyngeal carcinoma (NPC). However, due to individual differences in radiosensitivity, biomarkers are needed to tailored radiotherapy to cancer patients. However, comprehensive genome-wide radiogenomic studies on them are still lacking. The aim of this study was to identify genetic variants associated with radiotherapy response in patients with NPC. METHODS: This was a large­scale genome-wide association analysis (GWAS) including a total of 981 patients. 319 individuals in the discovery stage were genotyped for 688,783 SNPs using whole genome-wide screening microarray. Significant loci were further genotyped using MassARRAY system and TaqMan SNP assays in the validation stages of 847 patients. This study used logistic regression analysis and multiple bioinformatics tools such as PLINK, LocusZoom, LDBlockShow, GTEx, Pancan-meQTL and FUMA to examine genetic variants associated with radiotherapy efficacy in NPC. RESULTS: After genome-wide level analysis, 19 SNPs entered the validation stage (P < 1 × 10- 6), and rs11130424 ultimately showed statistical significance among these SNPs. The efficacy was better in minor allele carriers of rs11130424 than in major allele carriers. Further stratified analysis showed that the association existed in patients in the EBV-positive, smoking, and late-stage (III and IV) subgroups and in patients who underwent both concurrent chemoradiotherapy and induction/adjuvant chemotherapy. CONCLUSION: Our study showed that rs11130424 in the CACNA2D3 gene was associated with sensitivity to radiotherapy in NPC patients. TRIAL REGISTRATION NUMBER: Effect of genetic polymorphism on nasopharyngeal carcinoma chemoradiotherapy reaction, ChiCTR-OPC-14005257, Registered 18 September 2014, http://www.chictr.org.cn/showproj.aspx?proj=9546 .


Asunto(s)
Canales de Calcio , Estudio de Asociación del Genoma Completo , Neoplasias Nasofaríngeas , Humanos , Quimioradioterapia , Variación Genética , Genotipo , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/radioterapia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/radioterapia , Canales de Calcio/genética
3.
J Stroke Cerebrovasc Dis ; 32(11): 107367, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37734181

RESUMEN

OBJECTIVE: Chronic cerebral hypoperfusion (CCH) can cause a series of pathophysiological processes, including neuronal autophagy and apoptosis. VEGF-A has been reported to affect angiogenesis and neurogenesis in many CNS diseases. However, its effects on neuronal autophagy and apoptosis, as well as the underlying mechanisms in CCH remain unclear. METHODS: To address these issues, the CCH model was established by permanent bilateral common carotid artery occlusion (2VO). Rats were sacrificed at different stages of CCH. Hippocampal morphological and ultrastructural changes were detected using HE staining and electron microscopy. The immunoreactivities of microtubule-associated protein 1 light chain 3 (LC3) and phospho-cAMP response element binding protein (p-CREB) were examined by immunofluorescence staining. The neuronal apoptosis was detected via TUNEL staining. The levels of LC3-II, Beclin-1, Akt, p-Akt, CREB, p-CREB, Caspase-3, and Bad were accessed by Western blotting. Furthermore, mouse hippocampal HT22 neurons received the oxygen and glucose deprivation (OGD) treatment, VEGF-A treatment, and GSK690693 (an Akt inhibitor) treatment, respectively. RESULTS: LC3-II protein started to increase at 3 days of CCH, peaked at 4 weeks of CCH, then decreased. CCH increased the levels of LC3-II, Caspase-3, and Bad, and decreased the levels of p-Akt, CREB, and p-CREB, which were reversed by VEGF-A treatment. VEGF-A also improved CCH-induced neuronal ultrastructural injuries and apoptosis in the hippocampus in vitro. In HT22, the anti-apoptosis and pro-phosphorylation of VEGF-A were reversed by GSK690693. CONCLUSION: Present results provide a novel neuroprotective effect of VEGF-A in CCH that is related to the inhibition of neuronal autophagy and activation of the Akt/CREB signaling, suggesting a potential therapeutic strategy for ischemic brain damage.

4.
Mol Cancer ; 21(1): 169, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35999636

RESUMEN

BACKGROUND: Genetic variants associated with acute side effects of radiotherapy in nasopharyngeal carcinoma (NPC) remain largely unknown. METHODS: We performed a two-stage genome-wide association analysis including a total of 1084 patients, where 319 individuals in the discovery stage were genotyped for 688,783 SNPs using whole genome-wide screening microarray. Significant variants were then validated in an independent cohort of 765 patients using the MassARRAY system. Gene mapping, linkage disequilibrium, genome-wide association analysis, and polygenic risk score were conducted or calculated using FUMA, LDBlockShow, PLINK, and PRSice software programs, respectively. RESULTS: Five SNPs (rs6711678, rs4848597, rs4848598, rs2091255, and rs584547) showed statistical significance after validation. Radiotherapy toxicity was more serious in mutant minor allele carriers of all five SNPs. Stratified analysis further indicated that rs6711678, rs4848597, rs4848598, and rs2091255 correlated with skin toxicity in patients of EBV positive, late stage (III and IV), receiving both concurrent chemoradiotherapy and induction/adjuvant chemotherapy, and with OR values ranging from 1.92 to 2.66. For rs584547, high occurrence of dysphagia was found in A allele carriers in both the discovery (P = 1.27 × 10- 6, OR = 1.55) and validation (P = 0.002, OR = 4.20) cohorts. Furthermore, prediction models integrating both genetic and clinical factors for skin reaction and dysphagia were established. The area under curve (AUC) value of receiver operating characteristic (ROC) curves were 0.657 (skin reaction) and 0.788 (dysphagia). CONCLUSIONS: Rs6711678, rs4848597, rs4848598, and rs2091255 on chromosome 2q14.2 and rs584547 were found to be novel risk loci for skin toxicity and dysphagia in NPC patients receiving radiotherapy. TRIAL REGISTRATION: Chinese Clinical Trial Register (registration number: ChiCTR-OPC-14005257 and CTXY-140007-2).


Asunto(s)
Trastornos de Deglución , Neoplasias Nasofaríngeas , Quimioradioterapia , Trastornos de Deglución/genética , Sitios Genéticos , Estudio de Asociación del Genoma Completo , Humanos , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/radioterapia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patología , Neoplasias Nasofaríngeas/radioterapia
5.
New Phytol ; 235(4): 1486-1500, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35510797

RESUMEN

Protein sorting is an essential biological process in all organisms. Trafficking membrane proteins generally relies on the sorting machinery of the Golgi apparatus. However, many proteins have been found to be delivered to target locations via Golgi-independent pathways, but the mechanisms underlying this delivery system remain unknown. Here, we report that Sec24C mediates the direct secretory trafficking of the phytochelatin transporters ABCC1 and ABCC2 from the endoplasmic reticulum (ER) to prevacuolar compartments (PVCs) in Arabidopsis thaliana. Genetic analysis showed that the sec24c mutants are hypersensitive to cadmium (Cd) and arsenic (As) treatments due to mislocalisation of ABCC1 and ABCC2, which results in defects in the vacuole compartmentalisation of the toxic metals. Furthermore, we found that Sec24C recognises ABCC1 and ABCC2 through direct interactions to mediate their exit from the ER to PVCs, which is independent of brefeldin A-sensitive post-Golgi trafficking pathway. These findings expand our understanding of Golgi-independent trafficking, which also provide key insights regarding the mechanism of tonoplast protein sorting and open a new perspective on the function of Sec24 proteins.


Asunto(s)
Arabidopsis , Fenómenos Biológicos , Arabidopsis/genética , Arabidopsis/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Transporte de Proteínas , Vacuolas/metabolismo
6.
Anal Bioanal Chem ; 414(8): 2713-2724, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35083511

RESUMEN

Organophosphorus nerve agents (OPNAs) covalently bind to tyrosine 411 of human serum albumin (HSA) and the formed adducts are stable biomarkers of OPNA exposure. The detection of these adducts has been limited to mass spectrometry techniques combined with protein digestion. Here, we developed indirect competitive ELISA (icELISA) methods to verify OPNA exposure by the detection of OPNA-phosphonylated adducts at tyrosine 411 residue (OPNA-HSA adducts), in which monoclonal antibodies (mAbs) against phosphonylation sites at tyrosine 411 were introduced. The two mAbs were prepared by the fourth generation of rabbit mAb technology using the phosphonylated peptides of LVRY(GD or VX)TKKVPQC as the haptens. These mAbs were screened using our developed competitive ELISA method and then selected based on their individual affinity and selectivity. As a result, we obtained two mAbs that recognized the HSA Tyr 411 adduct of GD (mAb-5G2) or VX (mAb-12B9), respectively. They shared the highest affinity exhibiting a Kd value of about 10-6 mol/L of the OPNA exposure concentration. They also had remarkable selectivity, which could especially recognize their individual OPNA-HSA adducts in a native state but did not recognize other OPNA-HSAs and unadducted HSAs. Especially for mAb-12B9, it could clearly distinguish VX-HSA and GB-HSA between which there was only one alkyl difference in their phosphonyl portion of the adducted sites. The two mAbs were then used to build the icELISA method for analysis of the serum samples exposed to OPNA. It was found that the detectable lowest GD- and VX-exposed concentrations in serum samples were respectively 1.0 × 10-6 mol/L and 10.0 × 10-6 mol/L. This study provides one novel approach and strategy for the retrospective detection of OPNA exposure, and the two mAbs have great potential to be extended for point-of-care testing of OPNA intoxication.


Asunto(s)
Soman , Animales , Anticuerpos Monoclonales , Ensayo de Inmunoadsorción Enzimática , Compuestos Organotiofosforados , Conejos , Estudios Retrospectivos
7.
Reprod Domest Anim ; 57(2): 185-195, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34741362

RESUMEN

Glycolysis in follicular granulosa cells (GCs) is the primary source of energy metabolism substrate of oocytes and is closely related to follicular development in mammals. Many physiological functions of GCs are regulated by follicle-stimulating hormone (FSH). In contrast, whether FSH regulates the glycolysis of GCs and its mechanism remains unclear. This study explored the correlation between FSH concentration and glycolysis level of GCs from different diameters of water buffalo follicles, and further explored the mechanism of FSH regulation in glycolysis in vitro cultured GCs. Results showed the variation trend of lactic acid concentration in follicular fluid and the expression level of glycolysis-related genes in GCs were consistent with the variation trend of FSH concentration in follicular fluid from follicles with different diameters. When GCs were treated with FSH in vitro, the expression level of glycolysis-related genes, lactate production and glucose uptake increased correspondingly (p < .05). Furthermore, we found that expression trend of AMPK/Sirtuin1 (SIRT1) pathway-related genes in GCs was consistent with the expression trend of glycolysis-related genes and was positively correlated with FSH concentrations in vivo or cultured in vitro. Activation of SIRT1 increased the expression level of glycolytic key proteins and lactic acid production in GCs, while inhibition of SIRT1 showed the opposite effect. In general, glycolysis in water buffalo GCs in vivo or cultured in vitro was positively correlated with FSH concentration. AMPK/SIRT1 pathway plays an important role in the regulation of FSH on glycolysis in GCs. Our findings will enrich the understanding of FSH regulating the development of water buffalo follicles.


Asunto(s)
Búfalos , Hormona Folículo Estimulante , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Búfalos/metabolismo , Células Cultivadas , Estradiol/metabolismo , Femenino , Hormona Folículo Estimulante/metabolismo , Glucólisis , Células de la Granulosa/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo
8.
Cancer Cell Int ; 21(1): 102, 2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33579282

RESUMEN

BACKGROUND: Glioblastoma is the most common primary malignant brain tumor. Because of the limited understanding of its pathogenesis, the prognosis of glioblastoma remains poor. This study was conducted to explore potential competing endogenous RNA (ceRNA) network chains and biomarkers in glioblastoma by performing integrated bioinformatics analysis. METHODS: Transcriptome expression data from The Cancer Genome Atlas database and Gene Expression Omnibus were analyzed to identify differentially expressed genes between glioblastoma and normal tissues. Biological pathways potentially associated with the differentially expressed genes were explored by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis, and a protein-protein interaction network was established using the STRING database and Cytoscape. Survival analysis using Gene Expression Profiling Interactive Analysis was based on the Kaplan-Meier curve method. A ceRNA network chain was established using the intersection method to align data from four databases (miRTarBase, miRcode, TargetScan, and lncBace2.0), and expression differences and correlations were verified by quantitative reverse-transcription polymerase chain reaction analysis and by determining the Pearson correlation coefficient. Additionally, an MTS assay and the wound-healing and transwell assays were performed to evaluate the effects of complement C1s (C1S) on the viability and migration and invasion abilities of glioblastoma cells, respectively. RESULTS: We detected 2842 differentially expressed (DE) mRNAs, 2577 DE long non-coding RNAs (lncRNAs), and 309 DE microRNAs (miRNAs) that were dysregulated in glioblastoma. The final ceRNA network consisted of six specific lncRNAs, four miRNAs, and four mRNAs. Among them, four DE mRNAs and one DE lncRNA were correlated with overall survival (p < 0.05). C1S was significantly correlated with overall survival (p= 0.015). In functional assays, knockdown of C1S inhibited the proliferation and invasion of glioblastoma cell lines. CONCLUSIONS: We established four ceRNA networks that may influence the occurrence and development of glioblastoma. Among them, the MIR155HG/has-miR-129-5p/C1S axis is a potential marker and therapeutic target for glioblastoma. Knockdown of C1S inhibited the proliferation, migration, and invasion of glioblastoma cells. These findings clarify the role of the ceRNA regulatory network in glioblastoma and provide a foundation for further research.

9.
J Cell Physiol ; 235(5): 4594-4604, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31637708

RESUMEN

Gliomas are a group of brain cancers with high mortality and morbidity. Understanding the molecular mechanisms is important for the prevention or treatment of gliomas. The present study was to investigate the effects and mechanisms of long noncoding RNA TRPM2-AS in gliomas proliferation, migration, and invasion. We first compared the levels of TRPM2-AS in 111 patients with glioma to that of the normal control group by a quantitative polymerase chain reaction. The results indicated a significant increase of TRPM2-AS in patients with glioma (2.43 folds of control, p = .0135). MTT methods, wound healing assays, transwell analysis, and clone formation analysis indicated the overexpression of TRPM2-AS promoted the proliferation, migration, and invasion of U251 and U87 cells, while downregulation of TRPM2-AS inhibited the cell proliferation, migration, and invasion significantly (p < .05). To further uncover the mechanisms, bioinformatics analysis was conducted on the expression profiles, GSE40687 and GSE4290, from the Gene Expression Omnibus database. One hundred fifty-six genes were differentially expressed in both datasets (FC > 2.0; p = .05). Among these differentially expressed genes, the level of RGS4 messenger RNA was drastically regulated by TRPM2-AS. Further western-blot analysis indicated the increase of RGS4 protein expression and decrease of p-JNK/JNK and p-c-Jun/c-Jun ratio after TRPM2-AS overexpression. On the other hand, inhibition of TRPM2-AS by small interfering RNA suppressed the expression of RGS4 and promoted the ratios of p-JNK/JNK and p-c-Jun/c-Jun. The present work indicated the mechanisms of the participation of TRPM2-AS in the progression of gliomas might, at least partly, be related to JNK, c-Jun, and RGS4. Our work provided new insights into the underlying mechanisms of glioma cellular functions.


Asunto(s)
Neoplasias Encefálicas/enzimología , Movimiento Celular , Proliferación Celular , Glioma/enzimología , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Proteínas Proto-Oncogénicas c-jun/metabolismo , Proteínas RGS/metabolismo , ARN Largo no Codificante/metabolismo , Adulto , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Estudios de Casos y Controles , Línea Celular Tumoral , Bases de Datos Genéticas , Femenino , Regulación Neoplásica de la Expresión Génica , Glioma/genética , Glioma/patología , Humanos , Masculino , Persona de Mediana Edad , Invasividad Neoplásica , Fosforilación , Proteínas RGS/genética , ARN Largo no Codificante/genética , Transducción de Señal
10.
PLoS Biol ; 15(12): e2002978, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29284002

RESUMEN

Ion homeostasis is essential for plant growth and environmental adaptation, and maintaining ion homeostasis requires the precise regulation of various ion transporters, as well as correct root patterning. However, the mechanisms underlying these processes remain largely elusive. Here, we reported that a choline transporter gene, CTL1, controls ionome homeostasis by regulating the secretory trafficking of proteins required for plasmodesmata (PD) development, as well as the transport of some ion transporters. Map-based cloning studies revealed that CTL1 mutations alter the ion profile of Arabidopsis thaliana. We found that the phenotypes associated with these mutations are caused by a combination of PD defects and ion transporter misregulation. We also established that CTL1 is involved in regulating vesicle trafficking and is thus required for the trafficking of proteins essential for ion transport and PD development. Characterizing choline transporter-like 1 (CTL1) as a new regulator of protein sorting may enable researchers to understand not only ion homeostasis in plants but also vesicle trafficking in general.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Glicósido Hidrolasas/fisiología , Transporte Iónico/genética , Proteínas de Transporte de Membrana/fisiología , Adenosina Trifosfatasas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Proteínas de Transporte de Catión/metabolismo , Clonación Molecular , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Homeostasis , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Mutación , Transporte de Proteínas , Simportadores/metabolismo
11.
Mediators Inflamm ; 2020: 6268514, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32694928

RESUMEN

OBJECTIVE: Atherosclerosis is a chronic inflammatory disease which is responsible for many clinical manifestations. The present study was to investigate the anti-inflammatory functions and mechanisms of TNK1 in atherosclerosis. METHODS: The ApoE(-/-) mice and human carotid endarterectomy (CEA) atherosclerotic plaques were used to investigate the differential expression of TNK1. The ApoE(-/-) mice were fed with high-fat diet (HFD) or normal-fat diet (NFD) for 8 weeks; the aorta was separated and stained with oil red O to evaluate the formation of atherosclerosis. TNK1 in mice aorta was measured by qPCR. The human CEA were obtained and identified as ruptured and stable plaques. The level of TNK1 was measured by qPCR and Western-blot staining. Further studies were conducted in THP-1 cells to explore the anti-inflammatory effects of TNK1. We induced the formation of macrophages by incubating THP-1 cells with PMA (phorbol 12-myristate 13-acetate). Afterwards, oxidized low-density lipoprotein (oxLDL) was used to stimulate the inflammation, and the secretion of inflammatory factors was measured by ELISA and qPCR. The levels of TNK1, total STAT1 and Tyk2, and the phosphorylation of STAT1 and Tyk2 were measured by western blot to uncover the mechanisms of TNK1. RESULTS: The oil red O staining indicated obvious deposition of lipid on the aorta of ApoE(-/-) mice after 8-week HFD treatment. The TNK1 level was much higher in both the HFD-fed ApoE(-/-) mice aorta arch and the ruptured human CEA plaques. We found that TNK1 was highly expressed in THP-1 cells, compared to other atherosclerotic related cells (HUVEC, HBMEC, and HA-VSMC), indicating TNK1 might be involved in the inflammation. Suppressing the expression of TNK1 by shTNK1 inhibited the oxLDL-induced secretion of inflammatory factors, such as IL-12, IL-6, and TNF-α. ShTNK1 also inhibited the uptake of lipid and decreased the cellular cholesterol content in THP-1 cells. Furthermore, the shTNK1 suppressed the oxLDL-induced phosphorylation of Tyk2 and STAT1. CONCLUSION: TNK1 participated in the inflammation in atherosclerosis. shTNK1 suppressed the oxLDL-induced inflammation and lipid deposition in THP-1 cells. The mechanism might be related to the Tyk2/STAT signal pathway.


Asunto(s)
Aterosclerosis/metabolismo , Inflamación/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Factor de Transcripción STAT1/metabolismo , TYK2 Quinasa/metabolismo , Animales , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerosis/inmunología , Western Blotting , Ensayo de Inmunoadsorción Enzimática , Humanos , Inflamación/inmunología , Masculino , Ratones , Placa Aterosclerótica/inmunología , Placa Aterosclerótica/metabolismo , Proteínas Tirosina Quinasas/genética , Factor de Transcripción STAT1/genética , Células THP-1 , TYK2 Quinasa/genética
13.
Biochem Biophys Res Commun ; 482(4): 857-862, 2017 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-27889612

RESUMEN

Large amount of clinical evidence has demonstrated that insulin resistance is closely related to oncogenesis of endometrial cancer (EC). Despite recent studies showed the up-regulatory role of insulin in G protein-coupled estrogen receptor (GPER/GPR30) expression, GPER expression was not decreased compared to control when insulin receptor was blocked even in insulin treatment. The purpose of this study was to explore the possible mechanism by which insulin up-regulates GPER that drives EC cell proliferation. For this purpose, we first investigated the GPER expression in tissues of endometrial lesions, further explored the effect of GPER on EC cell proliferation in insulin resistance context. Then we analyzed the role of Ten-Eleven Translocation 1 (TET1) in insulin-induced GEPR expression and EC cell proliferation. The results showed that GPER was highly expressed in endometrial atypical hyperplasia and EC tissues. Mechanistically, insulin up-regulated TET1 expression and the latter played an important role in up-regulating GPER expression and activating PI3K/AKT signaling pathway. TET1 mediated GPER up-regulation was another mechanism that insulin promotes EC cell proliferation.


Asunto(s)
Proliferación Celular , Neoplasias Endometriales/patología , Endometrio/patología , Insulina/metabolismo , Transducción de Señal , Línea Celular Tumoral , Neoplasias Endometriales/metabolismo , Endometrio/metabolismo , Femenino , Humanos , Resistencia a la Insulina , Oxigenasas de Función Mixta/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Estrógenos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
14.
Tumour Biol ; 39(3): 1010428317695022, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28349823

RESUMEN

Increasing evidence indicates that long noncoding RNAs play important roles in development and progression of various cancers. Zinc finger antisense 1 is a novel long noncoding RNA whose clinical significance, biological function, and underlying mechanism are still undetermined in glioma. In this study, we reported that zinc finger antisense 1 expression was markedly upregulated in glioma and tightly correlated with clinical stage. Moreover, patients with high zinc finger antisense 1 expression had shorter survival. Multivariate Cox regression analysis provided a clue that, probably, zinc finger antisense 1 level could serve as an independent prognostic factor for glioma. Functionally, zinc finger antisense 1 acted as an oncogene in glioma because its knockdown could promote apoptosis and significantly inhibit cell proliferation, migration, and invasion. Furthermore, zinc finger antisense 1 silencing could result in cell cycle arrest at the G0/G1 phase and correspondingly decrease the percentage of S phase cells in both U87 and U251 cell lines. Moreover, it was found that silenced zinc finger antisense 1 could impair migration and invasion by inhibiting the epithelial-mesenchymal transition through reducing the expression of MMP2, MMP9, N-cadherin, Integrin ß1, ZEB1, Twist, and Snail as well as increasing E-cadherin level in glioma. Taken together, our data identified that zinc finger antisense 1 might act as a valuable prognostic biomarker and potential therapeutic target for glioma.


Asunto(s)
Proliferación Celular/genética , Glioma/genética , Pronóstico , ARN Largo no Codificante/genética , Adulto , Anciano , Apoptosis/genética , Puntos de Control del Ciclo Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Transición Epitelial-Mesenquimal/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Glioma/patología , Humanos , Masculino , Persona de Mediana Edad , Invasividad Neoplásica/genética , Proteínas de Neoplasias/biosíntesis
15.
Mediators Inflamm ; 2016: 5308170, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27403035

RESUMEN

Objective. The present study was performed to investigate the effects and mechanisms of miR-99a on LPS-induced endothelial cell inflammation, as well as the regulation of NF-κB on miR-99a production. Methods and Results. ELISA showed that LPS treatment significantly promoted the secretion of inflammatory factors (TNF-α, IL-6, IL-1ß, and MCP-1). LPS treatment also inhibited miR-99a production and promoted mTOR expression and NF-κB nuclear translocation. Overexpression of miR-99a suppressed the LPS-induced TNF-α, IL-6, IL-1ß, and MCP-1 overproduction, mTOR upregulation, and NF-κB nuclear translocation. The PROMO software analysis indicated NF-κB binding site in the -1643 to -1652 region of miR-99a promoter. Dual luciferase reporter analysis, electrophoretic mobility shift assays (EMSA), and chromosome immunoprecipitation (ChIP) assays demonstrated that NF-κB promoted the transcription of miR-99a by binding to the -1643 to -1652 region of miR-99a promoter. Further studies on HUVECs verified the regulatory effects of NF-κB on miR-99a production. Conclusion. MiR-99a inhibited the LPS-induced HUVECs inflammation via inhibition of the mTOR/NF-κB signal. NF-κB promoted miR-99a production by binding to the -1643 to -1652 region of miR-99a promoter. Considering the importance of endothelial inflammation on cardiovascular diseases, such as atherosclerosis, our results may provide a new insight into the pathogenesis and therapy of atherosclerosis.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana/metabolismo , MicroARNs/metabolismo , FN-kappa B/metabolismo , Sitios de Unión , Quimiocina CCL2/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Ensayo de Inmunoadsorción Enzimática , Células HEK293 , Histonas/metabolismo , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Inflamación/metabolismo , Interleucina-6/metabolismo , Lipopolisacáridos/farmacología , MicroARNs/genética , Reacción en Cadena de la Polimerasa , Regiones Promotoras Genéticas/genética , Serina-Treonina Quinasas TOR/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
16.
Int J Mol Sci ; 17(9)2016 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-27589728

RESUMEN

Emerging studies show that long noncoding RNAs (lncRNAs) have important roles in carcinogenesis. lncRNA ZEB1 antisense 1 (ZEB1-AS1) is a novel lncRNA, whose clinical significance, biological function, and underlying mechanism remains unclear in glioma. Here, we found that ZEB1-AS1 was highly expressed in glioma tissues, being closely related to clinical stage of glioma. Moreover, patients with high ZEB1-AS1 levels had poor prognoses, with the evidence provided by multivariate Cox regression analysis indicating that ZEB1-AS1 expression could serve as an independent prognostic factor in glioma patients. Functionally, silencing of ZEB1-AS1 could significantly inhibit cell proliferation, migration, and invasion, as well as promote apoptosis. Knockdown of ZEB1-AS1 significantly induced the G0/G1 phase arrest and correspondingly decreased the percentage of S phase cells. Further analysis indicated that ZEB1-AS1 could regulate the cell cycle by inhibiting the expression of G1/S transition key regulators, such as Cyclin D1 and CDK2. Furthermore, ZEB1-AS1 functioned as an important regulator of migration and invasion via activating epithelial to mesenchymal transition (EMT) through up-regulating the expression of ZEB1, MMP2, MMP9, N-cadherin, and Integrin-ß1 as well as decreasing E-cadherin levels in the metastatic progression of glioma. Additionally, forced down-regulation of ZEB1-AS1 could dramatically promote apoptosis by increasing the expression level of Bax and reducing Bcl-2 expression in glioma. Taken together, our data suggest that ZEB1-AS1 may serve as a new prognostic biomarker and therapeutic target of glioma.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Encefálicas/metabolismo , Glioma/metabolismo , ARN Largo no Codificante/genética , Adulto , Apoptosis , Biomarcadores de Tumor/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Cadherinas/genética , Cadherinas/metabolismo , Carcinogénesis/genética , Carcinogénesis/metabolismo , Línea Celular Tumoral , Proliferación Celular , Ciclina D1/genética , Ciclina D1/metabolismo , Quinasa 2 Dependiente de la Ciclina/genética , Quinasa 2 Dependiente de la Ciclina/metabolismo , Transición Epitelial-Mesenquimal , Femenino , Puntos de Control de la Fase G1 del Ciclo Celular , Glioma/genética , Glioma/patología , Humanos , Masculino , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Persona de Mediana Edad , ARN Largo no Codificante/metabolismo , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/genética , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo
17.
Breast Cancer Res Treat ; 151(3): 607-18, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25981901

RESUMEN

We aimed to investigate the association between gene co-expression modules and responses to neoadjuvant chemotherapy in breast cancer by using a systematic biological approach. The gene expression profiles and clinico-pathological data of 508 (discovery set) and 740 (validation set) patients with breast cancer who received neoadjuvant chemotherapy were analyzed. Weighted gene co-expression network analysis was performed and identified seven co-regulated gene modules. Each module and gene signature were evaluated with logistic regression models for pathological complete response (pCR). The association between modules and pCR in each intrinsic molecular subtype was also investigated. Two transcriptional modules were correlated with tumor grade, estrogen receptor status, progesterone receptor status, and chemotherapy response in breast cancer. One module that constitutes upregulated cell proliferation genes was associated with a high probability for pCR in the whole (odds ratio (OR) = 5.20 and 3.45 in the discovery and validation datasets, respectively), luminal B, and basal-like subtypes. The prognostic potentials of novel genes, such as MELK, and pCR-related genes, such as ESR1 and TOP2A, were identified. The upregulation of another gene co-expression module was associated with weak chemotherapy responses (OR = 0.19 and 0.33 in the discovery and validation datasets, respectively). The novel gene CA12 was identified as a potential prognostic indicator in this module. A systems biology network-based approach may facilitate the discovery of biomarkers for predicting chemotherapy responses in breast cancer and contribute in developing personalized medicines.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Regulación Neoplásica de la Expresión Génica , Redes Reguladoras de Genes , Transcriptoma , Adulto , Anciano , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Biomarcadores de Tumor , Neoplasias de la Mama/tratamiento farmacológico , Análisis por Conglomerados , Biología Computacional , Bases de Datos de Ácidos Nucleicos , Conjuntos de Datos como Asunto , Femenino , Perfilación de la Expresión Génica , Humanos , Persona de Mediana Edad , Anotación de Secuencia Molecular , Terapia Neoadyuvante , Clasificación del Tumor , Estadificación de Neoplasias , Oportunidad Relativa , Curva ROC , Resultado del Tratamiento
18.
Pharmazie ; 70(10): 668-73, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26601424

RESUMEN

MicroRNA-184 (miR-184) is found to be significantly deregulated in human cancers associated with tumorigenesis and progression. In this study, we aimed to investigate the role and mechanism of miR-184 expression in epithelial ovarian cancer (EOC). Relative expression of miR-184 was measured by quantificational real-time polymerase chain reaction assay (qRT-PCR) in 80 EOC patients. Kaplan-Meier curve and the log-rank test were conducted to detect the prognostic value of miR-184. Function assays including cell proliferation, apoptosis and inflammation were further explored in vitro. We found that miR-184 was down-regulated in EOC tissues and cell lines compared with paired non-cancerous tissues and IOSE, respectively. Moreover, miR-184 was expressed at significantly lower levels in late-stage (III/IV) EOC tissues. Cox regression multivariate analysis indicated that miR-184 and FIGO stage were independent prognostic indicators for EOC patients. Patients with high miR-184 level achieved significantly a higher 5-year survival rate compared with low level group (P < 0.001). Functional assays showed that miR-184 over-expression could suppress EOC cell proliferation as well as inflammation and induce apoptosis in vitro. Altogether, our results suggest that miR-184 together with pathologic diagnosis is critical for prognosis determination in EOC patients and help select treatment strategy.


Asunto(s)
Apoptosis/fisiología , Biomarcadores de Tumor/análisis , Proliferación Celular , Inflamación/patología , MicroARNs/análisis , MicroARNs/fisiología , Neoplasias Glandulares y Epiteliales/diagnóstico , Neoplasias Ováricas/diagnóstico , Apoptosis/genética , Carcinoma Epitelial de Ovario , Línea Celular Tumoral , Citocinas/metabolismo , Femenino , Humanos , Inflamación/genética , MicroARNs/genética , Persona de Mediana Edad , Pronóstico , Transfección
19.
Int J Clin Pharmacol Ther ; 52(5): 346-51, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24618070

RESUMEN

The aim of this study was to evaluate the efficacy of methotrexate (MTX) in the treatment of ankylosing spondylitis (AS). The literature on controlled clinical trials was searched from MEDLINE, EMBASE, OVID, and Cochrane Library databases up to November 2012. The quality of the studies included was evaluated publicly by two reviewers. A meta-analysis was conducted to the homogeneous studies using Cochrane systematic review. Three trials involving 116 patients compared treatment with MTX against placebo. No statistically significant differences (p < 0.05) were found in the primary outcome measures of withdrawal rate, bath ankylosing spondilitis active index (BASDAI), C-reactive protein (CRP), patient global assessment, and side effects such as nausea and vomiting. Two trials involving 142 patients compared treatment with MTX plus infliximab (IFX) against IFX alone in the effect of treatment of AS. No statistically significant differences (p < 0.05) were found in the primary outcome measures of ASAS20 and withdrawal rate. Thus, we should choose the right drugs based on the specific situation in clinical applications. Randomized controlled trials designed rationally and implemented strictly with multi-center, large sample size and enough follow-up time are needed in future research.


Asunto(s)
Inmunosupresores/uso terapéutico , Metotrexato/uso terapéutico , Espondilitis Anquilosante/tratamiento farmacológico , Distribución de Chi-Cuadrado , Humanos , Inmunosupresores/efectos adversos , Metotrexato/efectos adversos , Oportunidad Relativa , Factores de Riesgo , Espondilitis Anquilosante/diagnóstico , Resultado del Tratamiento
20.
Naunyn Schmiedebergs Arch Pharmacol ; 397(4): 2105-2120, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37782380

RESUMEN

Bacoside A (gypenoside, Gyp) is a potent bioactive compound derived from Gynostemma pentaphyllum, known to exert inhibitory effects on various malignant tumors. However, the effects of Gyp on glioma as well as the underlying mechanisms remain unclear. In the present study, we first conducted a comprehensive investigation into the anti-glioma potential of gypenosides using network pharmacology to identify potential glioma-related targets. Protein-protein interaction networks were assembled, and GO and KEGG enrichment analyses were performed for shared targets. Experimental validation involved assessing the viability of U251 and U87 cell lines using the MTS method. Furthermore, trans-well and scratch migration assays evaluated the cell migration, while flow cytometry and Hoechst 33342 staining were utilized for apoptosis assessment. The study also monitored changes in autophagy flow through fluorescence microscopy. The expression levels of proteins pertinent to migration, apoptosis, and autophagy were tested using Western blotting. Findings revealed that Gyp upregulated apoptosis-related proteins (Bax and cleaved caspase-9), downregulated anti-apoptotic protein Bcl-2, and migration-associated matrix metalloproteinases (MMP-2 and MMP-9). Furthermore, autophagy-related proteins (Beclin1 and LC3 II) were upregulated, and p62 protein expression was downregulated. Gyp displayed considerable potential in suppressing glioma progression by inhibiting cell proliferation, invasion, and migration and promoting apoptosis and autophagy. Gyp may offer potential clinical therapeutic choices in glioma management.


Asunto(s)
Apoptosis , Glioma , Saponinas , Triterpenos , Humanos , Glioma/tratamiento farmacológico , Glioma/patología , Proteínas Reguladoras de la Apoptosis/metabolismo , Proliferación Celular , Autofagia , Línea Celular Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA