Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Plant Cell ; 33(4): 1182-1195, 2021 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-33693873

RESUMEN

Flowering plants sense various environmental and endogenous signals to trigger the floral transition and start the reproductive growth cycle. CONSTANS (CO) is a master transcription factor in the photoperiod floral pathway that integrates upstream signals and activates the florigen gene FLOWERING LOCUS T (FT). Here, we performed comprehensive structural and biochemical analyses to study the molecular mechanism underlying the regulation of FT by CO in Arabidopsis thaliana. We show that the four previously characterized cis-elements in the FT promoter proximal region, CORE1, CORE2, P1, and P2, are all direct CO binding sites. Structural analysis of CO in complex with NUCLEAR FACTOR-YB/YC (NF-YB/YC) and the CORE2 or CORE1 elements revealed the molecular basis for the specific recognition of the shared TGTG motifs. Biochemical analysis suggested that CO might form a homomultimeric assembly via its N-terminal B-Box domain and simultaneously occupy multiple cis-elements within the FT promoter. We suggest that this multivalent binding gives the CO-NF-Y complex high affinity and specificity for FT promoter binding. Overall, our data provide a detailed molecular model for the regulation of FT by the master transcription factor complex CO-NF-Y during the floral transition.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Complejos Multiproteicos/metabolismo , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Arabidopsis/genética , Sitios de Unión , Cristalografía por Rayos X , Proteínas de Unión al ADN/genética , Regulación de la Expresión Génica de las Plantas , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Regiones Promotoras Genéticas , Dominios Proteicos , Transactivadores/química , Transactivadores/genética , Transactivadores/metabolismo , Factores de Transcripción/genética
2.
Int J Mol Sci ; 24(21)2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37958661

RESUMEN

Exosomes, as potent intercellular communication tools, have garnered significant attention due to their unique cargo-carrying capabilities, which enable them to influence diverse physiological and pathological functions. Extensive research has illuminated the biogenesis, secretion, and functions of exosomes. These vesicles are secreted by cells in different states, exerting either protective or harmful biological functions. Emerging evidence highlights their role in cardiovascular disease (CVD) by mediating comprehensive interactions among diverse cell types. This review delves into the significant impacts of exosomes on CVD under stress and disease conditions, including coronary artery disease (CAD), myocardial infarction, heart failure, and other cardiomyopathies. Focusing on the cellular signaling and mechanisms, we explore how exosomes mediate multifaceted interactions, particularly contributing to endothelial dysfunction, oxidative stress, and apoptosis in CVD pathogenesis. Additionally, exosomes show great promise as biomarkers, reflecting differential expressions of NcRNAs (miRNAs, lncRNAs, and circRNAs), and as therapeutic carriers for targeted CVD treatment. However, the specific regulatory mechanisms governing exosomes in CVD remain incomplete, necessitating further exploration of their characteristics and roles in various CVD-related contexts. This comprehensive review aims to provide novel insights into the biological implications of exosomes in CVD and offer innovative perspectives on the diagnosis and treatment of CVD.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedad de la Arteria Coronaria , Exosomas , MicroARNs , Infarto del Miocardio , Humanos , Exosomas/metabolismo , Enfermedades Cardiovasculares/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Infarto del Miocardio/metabolismo , Enfermedad de la Arteria Coronaria/metabolismo
3.
J Integr Plant Biol ; 64(3): 731-740, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35023269

RESUMEN

The transcription factor CONSTANS (CO) integrates day-length information to induce the expression of florigen FLOWERING LOCUS T (FT) in Arabidopsis. We recently reported that the C-terminal CCT domain of CO forms a complex with NUCLEAR FACTOR-YB/YC to recognize multiple cis-elements in the FT promoter, and the N-terminal tandem B-box domains form a homomultimeric assembly. However, the mechanism and biological function of CO multimerization remained unclear. Here, we report that CO takes on a head-to-tail oligomeric configuration via its B-boxes to mediate FT activation in long days. The crystal structure of B-boxesCO reveals a closely connected tandem B-box fold forming a continuous head-to-tail assembly through unique CDHH zinc fingers. Mutating the key residues involved in CO oligomerization resulted in a non-functional CO, as evidenced by the inability to rescue co mutants. By contrast, a transgene encoding a human p53-derived tetrameric peptide in place of the B-boxesCO rescued co mutant, emphasizing the essential role of B-boxesCO -mediated oligomerization. Furthermore, we found that the four TGTG-bearing cis-elements in FT proximal promoter are required for FT activation in long days. Our results suggest that CO forms a multimer to bind to the four TGTG motifs in the FT promoter to mediate FT activation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al ADN/metabolismo , Flores/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Fotoperiodo
4.
Appl Microbiol Biotechnol ; 105(21-22): 8469-8479, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34647135

RESUMEN

Biofilms are heterogeneous structures composed of microorganisms and the surrounding extracellular polymeric substances (EPS) that protect the microbial cells from harsh environments. Saccharomyces boulardii is the first yeast classified as a probiotic strain with unique properties. However, tolerance of S. boulardii biofilms to harsh environments especially during production and in the gastrointestine remains unknown. In this study, S. boulardii cells were encapsulated in alginate microcapsules and subsequently cultured to form biofilms, and their survival and tolerance were evaluated. Microencapsulation provided S. boulardii a confined space that enhanced biofilm formation. The thick alginate shell and the mature biofilm improved the ability of S. boulardii to survive under harsh conditions. The exogenous encapsulation and the endogenous biofilm structure together enhanced the gastrointestinal tolerance and thermotolerance of S. boulardii. Besides, as the alginate shell became thinner with an increase in the subsequent culture duration, the EPS of S. boulardii biofilms exerted an important protective effect in resisting high temperatures. The encapsulated biofilm of S. boulardii after 24-h culture exhibited 60 × higher thermotolerance at 60 °C (10 min), while those after 6-h and 24-h culture showed 1000 × to 550,000 × higher thermotolerance at 120 °C (1 min) compared with the planktonic cells without encapsulation. The present study's findings suggest that a combination of encapsulation and biofilm mode efficiently enhanced gastrointestinal tolerance and thermotolerance of S. boulardii. KEY POINTS: • Encapsulated S. boulardii in biofilm mode showed enhanced tolerance. • Exogenous shell and endogenous biofilm provided dual protection to S. boulardii.


Asunto(s)
Probióticos , Saccharomyces boulardii , Biopelículas , Matriz Extracelular de Sustancias Poliméricas , Saccharomyces cerevisiae
5.
Nutrients ; 15(19)2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37836447

RESUMEN

The occurrence of obesity and related metabolic disorders is rising, necessitating effective long-term weight management strategies. With growing interest in the potential role of gut microbes due to their association with responses to different weight loss diets, understanding the mechanisms underlying the interactions between diet, gut microbiota, and weight loss remains a challenge. This study aimed to investigate the potential impact of a multiphase dietary protocol, incorporating an improved ketogenic diet (MDP-i-KD), on weight loss and the gut microbiota. Using metagenomic sequencing, we comprehensively analyzed the taxonomic and functional composition of the gut microbiota in 13 participants before and after a 12-week MDP-i-KD intervention. The results revealed a significant reduction in BMI (9.2% weight loss) among obese participants following the MDP-i-KD intervention. Machine learning analysis identified seven key microbial species highly correlated with MDP-i-KD, with Parabacteroides distasonis exhibiting the highest response. Additionally, the co-occurrence network of the gut microbiota in post-weight-loss participants demonstrated a healthier state. Notably, metabolic pathways related to nucleotide biosynthesis, aromatic amino acid synthesis, and starch degradation were enriched in pre-intervention participants and positively correlated with BMI. Furthermore, species associated with obesity, such as Blautia obeum and Ruminococcus torques, played pivotal roles in regulating these metabolic activities. In conclusion, the MDP-i-KD intervention may assist in weight management by modulating the composition and metabolic functions of the gut microbiota. Parabacteroides distasonis, Blautia obeum, and Ruminococcus torques could be key targets for gut microbiota-based obesity interventions.


Asunto(s)
Dieta Cetogénica , Microbioma Gastrointestinal , Humanos , Obesidad , Dieta Reductora , Cuerpos Cetónicos , Pérdida de Peso
6.
iScience ; 24(1): 101952, 2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33458611

RESUMEN

As a promising target for alternative antimicrobials, bacterial recombinase A (RecA) protein has attracted much attention for its roles in antibiotic-driven SOS response and mutagenesis. Naphthalene polysulfonated compounds (NPS) such as suramin have previously been explored as antibiotic adjuvants targeting RecA, although the underlying structural bases for RecA-ligand interactions remain obscure. Based on our in silico predictions and documented activity of NPS in vitro, we conclude that the analyzed NPS likely interact with Tyr103 (Y103) and other key residues in the ATPase activity center (pocket A). For validation, we generated recombinant RecA proteins (wild-type versus Y103 mutant) to determine the binding affinities for RecA protein interactions with suramin and underexamined NPS in isothermal titration calorimetry. The corresponding dissociation constants (K d) ranged from 11.5 to 18.8 µM, and Y103 was experimentally shown to be critical to RecA-NPS interactions.

7.
Nat Commun ; 9(1): 2425, 2018 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-29930355

RESUMEN

The ability of a cell to dynamically switch its chromatin between different functional states constitutes a key mechanism regulating gene expression. Histone mark "readers" display distinct binding specificity to different histone modifications and play critical roles in regulating chromatin states. Here, we show a plant-specific histone reader SHORT LIFE (SHL) capable of recognizing both H3K27me3 and H3K4me3 via its bromo-adjacent homology (BAH) and plant homeodomain (PHD) domains, respectively. Detailed biochemical and structural studies suggest a binding mechanism that is mutually exclusive for either H3K4me3 or H3K27me3. Furthermore, we show a genome-wide co-localization of SHL with H3K27me3 and H3K4me3, and that BAH-H3K27me3 and PHD-H3K4me3 interactions are important for SHL-mediated floral repression. Together, our study establishes BAH-PHD cassette as a dual histone methyl-lysine binding module that is distinct from others in recognizing both active and repressive histone marks.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Cromatina/metabolismo , Regulación de la Expresión Génica de las Plantas , Histonas/metabolismo , Arabidopsis/metabolismo , Código de Histonas , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/fisiología , Metilación , Modelos Genéticos
8.
Nat Genet ; 50(9): 1247-1253, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30082787

RESUMEN

The ability of cells to perceive and translate versatile cues into differential chromatin and transcriptional states is critical for many biological processes1-5. In plants, timely transition to a flowering state is crucial for successful reproduction6-9. EARLY BOLTING IN SHORT DAY (EBS) is a negative transcriptional regulator that prevents premature flowering in Arabidopsis thaliana10,11. We found that EBS contains bivalent bromo-adjacent homology (BAH)-plant homeodomain (PHD) reader modules that bind H3K27me3 and H3K4me3, respectively. We observed co-enrichment of a subset of EBS-associated genes with H3K4me3, H3K27me3, and Polycomb repressor complex 2 (PRC2). Notably, EBS adopted an autoinhibition mode to mediate its switch in binding preference between H3K27me3 and H3K4me3. This binding balance was critical because disruption of either EBS-H3K27me3 or EBS-H3K4me3 interaction induced early floral transition. Our results identify a bivalent chromatin reader capable of recognizing two antagonistic histone marks, and we propose a distinct mechanism of interaction between active and repressive chromatin states.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Flores/genética , Genes Reguladores/genética , Histonas/genética , Cromatina/genética , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Homeodominio/genética , Transcripción Genética/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA