Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 20(19): 13632-13636, 2018 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-29737999

RESUMEN

A large bulk band gap is critical for the application of two-dimensional topological insulators (TIs) in spintronic devices operating at room temperature. On the basis of first-principles calculations, we predict BiXH (X = OH, SH) monolayers as TIs with an extraordinarily large bulk gap of 820 meV for BiOH and 850 meV for BiSH, and propose a tight-binding model considering spin-orbit coupling to describe the electronic properties of BiXH. These large gaps are entirely due to the strong spin-orbit interaction related to the pxy orbitals of the Bi atoms of the honeycomb lattice. The orbital filtering mechanism can be used to understand the topological properties of BiXH. The XH groups simply remove one branch of orbitals (pz of Bi) and reduce the trivial 6-band lattice into a 4-band, which is topologically non-trivial. The topological characteristics of BiXH monolayers are confirmed by nonzero topological invariant Z2 and a single pair of gapless helical edge states in the bulk gap. Owing to these features, the BiXH monolayers of the large-gap TIs are an ideal platform to realize many exotic phenomena and fabricate new quantum devices working at room temperature.

2.
ACS Appl Mater Interfaces ; 10(50): 43962-43969, 2018 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-30474373

RESUMEN

Rashba spin-orbit coupling (SOC) in topological insulators (TIs) is a very interesting phenomenon and has received extensive attention in two-dimensional (2D) materials. However, the coexistence of Rashba SOC and band topology, especially for materials with a square lattice, is still lacking. Here, by using first-principles calculations, we propose for the first time a SeTe monolayer as a 2D candidate with these novel properties. We find that the square lattice exhibits anisotropic band dispersions near the Fermi level and a Rashba effect related to large SOC and inversion asymmetry, which leads to a Dirac semimetal state. Another prominent feature is that SeTe can achieve a topological state under a tensile strain of only 1%, characterized by the Z2 invariant and helical edge states. Our findings demonstrate that SeTe is a promising material for novel electronic and spintronics applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA