Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Molecules ; 29(16)2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39202964

RESUMEN

Metal-organic frameworks (MOFs) have drawn intensive attention as a class of highly porous, crystalline materials with significant potential in various applications due to their tunable porosity, large internal surface areas, and high crystallinity. This paper comprehensively reviews the fabrication methods of pure MOF membranes and films, including in situ solvothermal synthesis, secondary growth, electrochemical deposition, counter diffusion growth, liquid phase epitaxy and solvent-free synthesis in the category of different MOF families with specific metal species, including Zn-based, Cu-based, Zr-based, Al-based, Ni-based, and Ti-based MOFs.

2.
Molecules ; 28(5)2023 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-36903428

RESUMEN

In this study, a series of Al-doped metal-organic frameworks (AlxZr(1-x)-UiO-66) were synthesized through a one-step solvothermal method. Various characterization techniques, including X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and N2 sorption measurement, suggested that the Al doping was uniform and barely influenced the crystallinity, chemical stability, and thermal stability of the materials. Two cationic dyes, safranine T (ST) and methylene blue (MB), were selected for investigating the adsorption performances of Al-doped UiO-66 materials. Al0.3Zr0.7-UiO-66 exhibited 9.63 and 5.54 times higher adsorption capacities than UiO-66, 498 mg/g and 251 mg/g for ST and MB, respectively. The improved adsorption performance can be attributed to π-π interaction, hydrogen bond, and the coordination between the dye and Al-doped MOF. The pseudo-second-order and Langmuir models explained the adsorption process well, which indicated that the dye adsorption on Al0.3Zr0.7-UiO-66 mostly occurred through chemisorption on homogeneous surfaces. A thermodynamic study indicated the adsorption process was spontaneous and endothermic. The adsorption capacity did not decrease significantly after four cycles.

3.
J Am Chem Soc ; 142(50): 21110-21121, 2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33263388

RESUMEN

High-stability, zirconium-based metal-organic frameworks are attractive as heterogeneous catalysts and as model supports for uniform arrays of subsequently constructed heterogeneous catalysts-for example, MOF-node-grafted metal-oxy and metal-sulfur clusters. For hexa-Zr(IV)-MOFs characterized by nodes that are less than 12-connected, sites not used for linkers are ideally occupied by reactive and displaceable OH/H2O pairs. The desired pairs are ideal for grafting the aforementioned catalytic clusters, while aqua-ligand lability renders them effective for exposing highly Lewis-acidic Zr(IV) sites (catalytic sites) to candidate reactants. New single-crystal X-ray studies of an eight-connected Zr-MOF, NU-1000, reveal that conventional activation fully removes modulator ligands, but replaces them with three node-blocking formate ligands (from solvent decomposition) and only one OH/H2O pair, not four-a largely overlooked complication that now appears to be general for Zr-MOFs. Here we describe an alternative activation protocol that effectively removes modulators, avoids formate, and installs the full complement of terminal OH/H2O pairs. It does so via an unusual isolatable intermediate featuring eight aqua ligands and four non-ligated chlorides-again as supported by single-crystal X-ray data. We find that complete replacement of node-blocking modulators/formate with the originally envisioned OH/OH2 pairs has striking consequences; here we touch upon just three. First, elimination of unrecognized formate renders aqua ligands much more thermally labile, enabling open Zr(IV) sites to be obtained at lower temperature. Second, in the absence of formate, which otherwise links and locks pairs of node Zr(IV) ions, reversible removal of aqua ligands engenders reversible contraction of MOF meso- and micropores, as evidenced by X-ray diffraction. Third, formate replacement with OH/OH2 pairs renders NU-1000 ca.10× more active for catalytic hydrolytic degradation of a representative simulant of G-type chemical warfare agents.

4.
J Am Chem Soc ; 142(10): 4609-4615, 2020 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-32069051

RESUMEN

Zr6-based metal-organic frameworks (MOFs) with tetratopic organic linkers have been extensively investigated owing to their versatile structural tunability. While diverse topologies and polymorphism in the resulting MOFs are often encountered with tetratopic linkers and Zr6 nodes, reports on phase transitions within these systems are rare. Thus, we have a limited understanding of polymorph transformations, hindering the rational development of pure phase materials. In this study, a phase transition from a microporous MOF, scu-NU-906, to a mesoporous MOF, csq-NU-1008, was discovered and monitored through in situ variable temperature liquid-cell transmission electron microscopy (VT-LCTEM), high-resolution transmission electron microscopy (HRTEM), and in situ variable temperature powder X-ray diffraction (VT-PXRD). It was found that the microporous- to-mesoporous transformation in the presence of formic acid occurs via a concomitant dissolution-reprecipitation process.

5.
J Am Chem Soc ; 142(51): 21428-21438, 2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33290083

RESUMEN

While linkers with various conformations pose challenges in the design and prediction of metal-organic framework (MOF) structures, they ultimately provide great opportunities for the discovery of novel structures thereby enriching structural diversity. Tetratopic carboxylate linkers, for example, have been widely used in the formation of Zr-based MOFs due to the ability to target diverse topologies, providing a promising platform to explore their mechanisms of formation. However, it remains a challenge to control the resulting structures when considering the complex assembly of linkers with unpredicted conformations and diverse Zr6 node connectivities. Herein, we systematically explore how solvents and modulators employed during synthesis influence the resulting topologies of Zr-MOFs, choosing H4TCPB-Br2 (1,4-dibromo-2,3,5,6-tetrakis(4-carboxyphenyl)benzene) as a representative tetratopic carboxylate linker. By modulating the reaction conditions, the conformations of the linker and the connectivities of the Zr6 node can be simultaneously tuned, resulting in four types of structures: a new topology (NU-500), she (NU-600), scu (NU-906), and csq (NU-1008). Importantly, we have synthesized the first 5-connected Zr6 node to date with the (4,4,4,5)-connected framework, NU-500. We subsequently performed detailed structural analyses to uncover the relationship between the structures and topologies of these MOFs and demonstrated the crucial role that the flexible linker played to access varied structures by different degrees of linker deformation. Due to a variety of pore structures ranging from micropores to hierarchical micropores and mesopores, the resulting MOFs show drastically different behaviors for the adsorption of n-hexane and dynamic adsorption of 2-chloroethyl ethyl sulfide (CEES) under dry and humid conditions.


Asunto(s)
Contaminantes Ambientales/química , Contaminantes Ambientales/aislamiento & purificación , Estructuras Metalorgánicas/química , Circonio/química , Adsorción , Benceno/química , Cinética , Gas Mostaza/análogos & derivados , Gas Mostaza/química , Gas Mostaza/aislamiento & purificación , Porosidad
6.
J Am Chem Soc ; 141(10): 4365-4371, 2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30773005

RESUMEN

Porous materials, including metal-organic frameworks (MOFs), are known to undergo structural changes when subjected to applied hydrostatic pressures that are both fundamentally interesting and practically relevant. With the rich structural diversity of MOFs, the development of design rules to better understand and enhance the mechanical stability of MOFs is of paramount importance. In this work, the compressibilities of seven MOFs belonging to two topological families (representing the most comprehensive study of this type to date) were evaluated using in situ synchrotron X-ray powder diffraction of samples within a diamond anvil cell. The judicious selection of these materials, representing widely studied classes of MOFs, provides broadly applicable insight into the rigidity and compression of hybrid materials. An analysis of these data reveals that the bulk modulus depends on several structural parameters (e.g., void fraction and linker length). Furthermore, we find that lattice distortions play a major role in the compression of MOFs. This study is an important step toward developing a predictive model of the structural variables that dictate the compressibility of porous materials.

7.
J Am Chem Soc ; 141(20): 8306-8314, 2019 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-31083934

RESUMEN

The understanding of the catalyst-support interactions has been an important challenge in heterogeneous catalysis since the supports can play a vital role in controlling the properties of the active species and hence their catalytic performance. Herein, a series of isostructural mesoporous metal-organic frameworks (MOFs) based on transition metals, lanthanides, and actinides (Zr, Hf, Ce, Th) were investigated as supports for a vanadium catalyst. The vanadium species was coordinated to the oxo groups of the MOF node in a single-ion fashion, as determined by single-crystal X-ray diffraction, diffuse reflectance infrared Fourier transform spectroscopy, and diffuse reflectance UV-vis spectroscopy. The support effects of these isostructural MOFs were then probed using the aerobic oxidation of 4-methoxybenzyl alcohol as a model reaction. The turnover frequency was found to be correlated with the electronegativity and oxidation state of the metal cations on the supporting MOF nodes, highlighting an important consideration when designing catalyst supports.

8.
Inorg Chem ; 58(2): 1513-1517, 2019 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-30592621

RESUMEN

Efforts toward predictive topology within the design and synthesis of metal-organic frameworks (MOFs) have been extensively studied. Herein, we report an investigation of a linker competition for the nucleation of a Zr6-based mixed linker MOF. By varying the relative additions of two linkers and introducing prior seeding to the system, we discern that the scu topology is the kinetic product of the two competing linkers. Elemental mapping analysis indicates that the competing linkers are uniformly distributed throughout the MOF. The final ratios of the linkers in the dissolved MOFs align well with the initial synthetic ratio. Through the introduction of a prior nucleation phase to seed the system, the thermodynamic csq product is more readily achieved. The results reported will enhance the understanding of MOF growth process.

9.
J Am Chem Soc ; 140(36): 11179-11183, 2018 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-30113833

RESUMEN

Zr-based metal-organic frameworks (MOFs) have been known for their excellent stability; however, due to the high connectivity of the Zr6 nodes, it is challenging to introduce flexibility into Zr-MOFs. Here we present a flexible Zr-MOF named NU-1400 comprising 4-connected Zr6 nodes and tetratopic linkers. It exhibits guest-dependent structural flexibility with up to 48% contraction in the unit cell volume as evidenced by single-crystal X-ray diffraction studies. The expanded or contracted conformations of NU-1400 showed drastically different reactivity toward the hydrolysis of a nerve agent simulant owing to the size-selective effect toward the reactant.

10.
Chem Commun (Camb) ; 58(63): 8866-8869, 2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-35856683

RESUMEN

The effects of a series of MOFs on the adsorption and separation of lithium isotopes were investigated in this paper. Seven kinds of MOF were prepared, and the characterization studies of MIL-100(Fe) before and after adsorption by X-ray photoelectron spectroscopy (XPS) demonstrated the potential chemical interaction between Fe and Li. The influence of metal ions, counter-ions and solvents on the adsorption capacity and separation factor was investigated. The maximum separation factor can reach 1.048 ± 0.001. MIL-100(Fe) also has good regeneration performance.

11.
ACS Appl Mater Interfaces ; 13(40): 47793-47799, 2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34596388

RESUMEN

The continuously developing lithium battery market makes seeking a reliable lithium supply a top priority for technology companies. Although metal-organic frameworks have been extensively researched as adsorbents owing to their exceptional properties, lithium adsorption has been scarcely investigated. Herein, we prepared a novel cuboid rod-shaped three-dimensional framework termed TJU-21 composed of fluorine-pillared coordination layers of Fe-O inorganic chains and benzene-1,3,5-tricarboxylate (BTC) linkages. Besides thermal and chemical robustness, a remarkably high lithium uptake of about 41 mg·g-1 was observed on TJU-21 as a fast-spontaneous endothermic process. Single-crystal X-ray diffraction demonstrated that the adsorbed lithium was located in the cavity symmetrically assembled by iron sites and organic ligands between adjacent layers, while another kind of cavity in the framework circled by Fe-O-Fe-O-Fe-O-Fe chains and shared BTC linkages was occupied by hydrogen-bonded water molecules. Lithium adsorption resulted in decreased curviness of the coordination layers, and the binding energy change at O 1s as well as the increased Fe 2p peak, suggested potential interaction with iron sites. The practicability of TJU-21 as a lithium adsorbent was further proved by the considerable capacity and selectivity in simulated salt brines with excellent reusability.

12.
Chem Commun (Camb) ; 56(83): 12586-12588, 2020 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-32945298

RESUMEN

A dense zeolite layer with a thickness of approximately 500 nm was demonstrated by a confined-space strategy in a sandwiched mode of (SiO2)/(silicalite-1)/(SiO2). The gel-free secondary growth methodology bypasses the post-calcination step, avoiding excess energy consumption and possible film damage. Significantly enhanced pervaporation separation was observed with separation factors of 136 and 113, and fluxes of 2.3 and 2.2 kg m-2 h-1 for ethanol/n-butanol aqueous solutions, respectively. In addition, the membrane stability was confirmed by the 14 day pervaporation test.

13.
ACS Appl Mater Interfaces ; 11(6): 6097-6103, 2019 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-30707840

RESUMEN

The United States Environmental Protection Agency (EPA) recognizes atrazine, a commonly used herbicide, as an endocrine disrupting compound. Excessive use of this agrochemical results in contamination of surface and ground water supplies via agricultural runoff. Efficient removal of atrazine from contaminated water supplies is paramount. Here, the mechanism governing atrazine adsorption in Zr6-based metal-organic frameworks (MOFs) has been thoroughly investigated by studying the effects of MOF linkers and topology on atrazine uptake capacity and uptake kinetics. We found that the mesopores of NU-1000 facilitated rapid atrazine uptake saturating in <5 min and that the pyrene-based linkers offered sufficient sites for π-π interactions with atrazine as demonstrated by the near 100% uptake. Without the presence of a pyrene-based linker, NU-1008, a MOF similar to NU-1000 with respect to surface area and pore size, removed <20% of the exposed atrazine. These results suggest that the atrazine uptake capacity demonstrated by NU-1000 stems from the presence of a pyrene core in the MOF linker, affirming that π-π stacking is responsible for driving atrazine adsorption. Furthermore, NU-1000 displays an exceptional atrazine removal capacity through three cycles of adsorption-desorption. Powder X-ray diffraction and Brunauer-Emmett-Teller surface area analysis confirmed the retention of MOF crystallinity and porosity throughout the adsorption-desorption cycles.

14.
Chem Sci ; 10(4): 1186-1192, 2019 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-30774917

RESUMEN

Tetratopic organic linkers have been extensively used in Zr-based metal-organic frameworks (MOFs) where diverse topologies have been observed. Achieving meticulous control over the topologies to tune the pore sizes and shapes of the resulting materials, however, remains a great challenge. Herein, by introducing substituents to the backbone of tetratopic linkers to affect the linker conformation, phase-pure Zr-MOFs with different topologies and porosity were successfully obtained under the same synthetic conditions. The conversion of CO2 to valuable cyclic carbonates is a promising route for the mitigation of the greenhouse gas. Owing to the presence of substrate accessible Lewis acidic Zr(iv) sites in the 8-connected Zr6 nodes, the Zr-MOFs in this study have been investigated as heterogenous acid catalysts for CO2 cycloaddition to styrene oxide. The MOFs exhibited drastically different catalytic activities depending on their distinct pore structures. Compared to previously reported MOF materials, a superior catalytic activity was observed with the mesoporous NU-1008, giving an almost 100% conversion under mild conditions.

15.
ACS Appl Mater Interfaces ; 11(45): 42179-42185, 2019 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-31638371

RESUMEN

The last decade has witnessed significant advances in the scale-up synthesis of metal-organic frameworks (MOFs) using commercially available and affordable organic linkers. However, the synthesis of MOFs using elongated and/or multitopic linkers to access MOFs with large pore volume and/or various topologies can often be challenging due to multistep organic syntheses involved for linker preparation. In this report, a modular MOF synthesis strategy is developed by utilizing the coordination and covalent bonds formation in one-pot strategy where monoacid-based ligands reacted to form ditopic ligands, which then assembled into a three-dimensional MOF with Zr6 clusters. Chemical stability of the resulting materials was significantly enhanced through converting the imine bond into robust linkage via cycloaddition with phenylacetylene. Oxygen storage capacities of the MOFs were measured, and enhanced volumetric O2 uptake was observed for the stabilized MOF, NU-401-Q.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA