Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Opt Express ; 32(8): 13825-13835, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38859342

RESUMEN

An approach to generating stable phase-locked dual-frequency microwave signals is proposed and demonstrated based on a dual-passband optoelectronic oscillator (OEO). Mode gain competition is broken by employing frequency mixing mutual injection effect to realize phase locking between the two oscillation signals, which is achieved by applying a single-tone signal to a microwave mixer in the OEO cavity. In addition, a dual-loop configuration with balanced detection is utilized to ensure a high side mode suppression ratio (SMSR) and ultra-low phase noise, which also enhances the stability of the generated signal. In the experiment, a phase-locked dual-frequency microwave signal at 9.9982 GHz and 10.1155 GHz is generated by using the proposed OEO scheme. The SMSR and the phase noise are 75 dB and -141 dBc/Hz@10 kHz, respectively. Additionally, the Allan deviation of the generated signal is in the order of 10-11@1 s. These parameters are superior to those based on the same OEO but with a single-loop configuration, which are also compared in detail.

2.
Opt Express ; 31(25): 41635-41644, 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38087557

RESUMEN

A high-resolution real-time Fourier transform scheme is proposed and demonstrated based on injecting an optical frequency comb (OFC) into a frequency shifting loop (FSL). Through setting the frequency interval between neighboring teeth in the coherent OFC to be equal to an integer multiple of the frequency shift and also the free spectral range of the FSL, the number of the effective signal replicas from the FSL is increased by M times, where M is the tooth number of the OFC. Hence, it breaks the limitation on the number of round trips due to the gain saturation effect and the cumulative amplified spontaneous emission noise in the FSL under a single optical carrier injection, which greatly enhances the frequency resolution. In the experiment, a coherent three-tone optical carrier is injected into an FSL to realize real-time spectrum analysis, where the frequency resolution is enhanced by three times compared with that by using a single-tone optical carrier injection, i.e., from 60 kHz to 20 kHz.

3.
Opt Express ; 31(17): 27529-27542, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37710826

RESUMEN

Neuromorphic spiking information processing based on neuron-like excitable effect has achieved rapid development in recent years due to its advantages such as ultra-high operation speed, programming-free implementation and low power consumption. However, the current physical platforms lack building blocks like compilers, logic gates, and more importantly, data memory. These factors become the shackles to construct a full-physical layer neural network. In this paper, a neuromorphic regenerative memory scheme is proposed based on a time-delayed broadband nonlinear optoelectronic oscillator (OEO), which enables reshaping and regenerating on-off keying encoding sequences. Through biasing the dual-drive Mach-Zehnder electro-optic modulator in the OEO cavity near its minimum transmission point, the OEO can work in excitable regime, where localized states are maintained for robust nonlinear spiking response. Both simulation and experiment are carried out to demonstrate the proposed scheme, where the simulation results and the experimental results fit in with each other. The proposed OEO-based neuromorphic regenerative memory scheme exhibits long-term response ability for short-term excitation, which shows an enormous application potential for high-speed neuromorphic information buffering, optoelectronic interconnection and computing.

4.
Opt Express ; 31(17): 28134-28144, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37710875

RESUMEN

An approach to expanding the instantaneous bandwidth of a photonic sampling analog-to-digital converter (ADC) for receiving linear frequency modulation waveforms (LFMWs) is proposed and experimentally demonstrated based on up-sampling and filtering in the fractional Fourier domain. Through twice zero interpolation, the equivalent sampling rate is quadrupled, which also quadruples the nominal instantaneous bandwidth of the photonic sampling ADC. In addition, with the assistance of bandpass filtering in the fraction Fourier domain, the image signals and the harmonic distortions generated in the interpolation process are filtered out. As a result, the effective instantaneous bandwidth of the photonic sampling ADC is doubled. In the experiment, the instantaneous bandwidth of a photonic sampling ADC with a sampling rate of 5 GSa/s for receiving LFMWs is increased from 2.5 GHz to 5 GHz by using the proposed method. Input LFMWs within the frequency range of 24-27 GHz and 30-33 GHz, i.e., with an instantaneous bandwidth of 3 GHz, are digitized without frequency-domain aliasing. Besides, the ability of the proposed method to enhance the ranging accuracy in a broadband radar system is demonstrated. This method reduces the hardware complexity of the photonic sampling ADC for receiving broadband LFMWs in radar systems.

5.
Opt Lett ; 48(13): 3411-3414, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37390143

RESUMEN

An approach to generating pulses with programmable positions is proposed and demonstrated based on a phase-modulated optical frequency-shifting loop (OFSL). By setting the OFSL to operate in the integer Talbot state, pulses are generated in the phase-locked positions, since the additional phase introduced by the electro-optic phase modulator (PM) in the OFSL is equal to an integer multiple of 2π in each round trip. Therefore, the pulse positions can be controlled and encoded by designing the driving waveform of the PM in a round-trip time. In the experiment, linear, round-trip, quadratic, and sinusoidal variations of pulse intervals are achieved by applying the corresponding driving waveforms to the PM. Pulse trains with coded pulse positions are also realized. In addition, the OFSL driven by waveforms with repetition rates equal to double and triple the free spectral range of the loop is also demonstrated. The proposed scheme paves a way to generate optical pulse trains with user-defined pulse positions, which can be used for such applications as compressed sensing and lidar.


Asunto(s)
Ojo , Frecuencia Cardíaca
6.
Opt Express ; 30(16): 28569-28576, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36299049

RESUMEN

A self-calibrated approach is proposed to measure the relative frequency response of Mach-Zehnder modulators (MZMs) based on dual-carrier modulation and low-frequency detection. In this scheme, a dual-carrier is generated by combining a continuous-wave light from a distributed feedback laser diode with its frequency-shifted replica. Through modulating the dual-carrier by a frequency-scanned single-tone microwave signal via the MZM under test biased at its minimum transmission point, a fixed low-frequency heterodyne signal carrying the electro-optic modulation response information is generated after photodetection, from which the relative frequency response of the MZM can be obtained. In the experiment, the relative frequency response of a commercial MZM is measured by using the proposed method, where the result fits in with those obtained by using the conventional optical spectrum analysis method and the microwave network analysis method. The proposed method features self-calibration, high frequency resolution, low-frequency detection, and usage of only a single frequency-scanned microwave source, which is favorable for characterizing the microwave performance of MZMs in backbone optical communication and microwave photonic systems.

7.
Opt Express ; 30(16): 29611-29620, 2022 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-36299132

RESUMEN

High-speed analog-to-digital conversion (ADC) is experimentally demonstrated by employing a time and wavelength interleaved ultra-short optical pulse train to achieve photonic sampling and using wavelength division demultiplexing to realize speed matching between the fast optical front-end and the slow electronic back-end. The sampling optical pulse train is generated from a cavity-less ultra-short optical pulse source involving a packaged device that monolithically integrates an intensity modulator and a phase modulator into a chip based on lithium niobate on insulator (LNOI). In the experiment, the fiber-to-fiber insertion loss of the packaged modulation device is measured to be 6.9 dB. In addition, the half-wave voltages of the Mach-Zehnder modulator and the phase modulator in the LNOI-based modulation device are measured to be 3.6 V and 3.4 V at 5 GHz, respectively. These parameters and the device size are superior to those based on cascaded commercial devices. Through using the packaged modulation device, two ultra-short optical pulse trains centered at 1541.40 nm and 1555.64 nm are generated with time jitters of 19.2 fs and 18.9 fs in the integral offset frequency range of 1 kHz to 10 MHz, respectively, and are perfectly time interleaved into a single pulse train with a repetition rate of 10 GHz and a time jitter of 19.8 fs. Based on the time and wavelength interleaved ultra-short optical pulse train, direct digitization of microwave signals within the frequency range of 1 GHz to 40 GHz is demonstrated by using a two-channel wavelength demultiplexing photonic ADC architecture, where the effective number of bits are 5.85 bits and 3.75 bits for the input signal at 1.1 GHz and 36.3 GHz, respectively.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA