Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nature ; 554(7693): 475-480, 2018 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-29443965

RESUMEN

Cerebrovascular disease is the third most common cause of death in developed countries, but our understanding of the cells that compose the cerebral vasculature is limited. Here, using vascular single-cell transcriptomics, we provide molecular definitions for the principal types of blood vascular and vessel-associated cells in the adult mouse brain. We uncover the transcriptional basis of the gradual phenotypic change (zonation) along the arteriovenous axis and reveal unexpected cell type differences: a seamless continuum for endothelial cells versus a punctuated continuum for mural cells. We also provide insight into pericyte organotypicity and define a population of perivascular fibroblast-like cells that are present on all vessel types except capillaries. Our work illustrates the power of single-cell transcriptomics to decode the higher organizational principles of a tissue and may provide the initial chapter in a molecular encyclopaedia of the mammalian vasculature.


Asunto(s)
Vasos Sanguíneos/citología , Encéfalo/irrigación sanguínea , Encéfalo/citología , Células Endoteliales/clasificación , Animales , Arterias/citología , Arteriolas/citología , Capilares/citología , Femenino , Fibroblastos/clasificación , Masculino , Ratones , Miocitos del Músculo Liso/clasificación , Especificidad de Órganos , Pericitos/clasificación , Análisis de la Célula Individual , Transcriptoma , Venas/citología
2.
Nature ; 560(7716): E3, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29925939

RESUMEN

In Fig. 1b of this Article, 'Csf1r' was misspelt 'Csfr1'. In addition, in Extended Data Fig. 11b, owing to an error during figure formatting, the genes listed in the first column shifted down three rows below the first gene on the list, causing a mismatch between the gene names and their characteristics. These errors have been corrected online, and the original Extended Data Fig. 11b is provided as Supplementary Information to the accompanying Amendment.

3.
Nature ; 532(7599): 380-4, 2016 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-27074508

RESUMEN

Blood vessels define local microenvironments in the skeletal system, play crucial roles in osteogenesis and provide niches for haematopoietic stem cells. The properties of niche-forming vessels and their changes in the ageing organism remain incompletely understood. Here we show that Notch signalling in endothelial cells leads to the expansion of haematopoietic stem cell niches in bone, which involves increases in CD31-positive capillaries and platelet-derived growth factor receptor-ß (PDGFRß)-positive perivascular cells, arteriole formation and elevated levels of cellular stem cell factor. Although endothelial hypoxia-inducible factor signalling promotes some of these changes, it fails to enhance vascular niche function because of a lack of arterialization and expansion of PDGFRß-positive cells. In ageing mice, niche-forming vessels in the skeletal system are strongly reduced but can be restored by activation of endothelial Notch signalling. These findings indicate that vascular niches for haematopoietic stem cells are part of complex, age-dependent microenvironments involving multiple cell populations and vessel subtypes.


Asunto(s)
Envejecimiento/fisiología , Arteriolas/fisiología , Huesos/irrigación sanguínea , Capilares/fisiología , Células Madre Hematopoyéticas/citología , Nicho de Células Madre , Animales , Arteriolas/citología , Huesos/citología , Huesos/metabolismo , Capilares/citología , Recuento de Células , Células Endoteliales/metabolismo , Factor 1 Inducible por Hipoxia/metabolismo , Masculino , Ratones , Osteogénesis , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptores Notch/metabolismo , Transducción de Señal , Factor de Células Madre/metabolismo
4.
Development ; 144(19): 3590-3601, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28851707

RESUMEN

Tissue fluid drains through blind-ended lymphatic capillaries, via smooth muscle cell (SMC)-covered collecting vessels into venous circulation. Both defective SMC recruitment to collecting vessels and ectopic recruitment to lymphatic capillaries are thought to contribute to vessel failure, leading to lymphedema. However, mechanisms controlling lymphatic SMC recruitment and its role in vessel maturation are unknown. Here, we demonstrate that platelet-derived growth factor B (PDGFB) regulates lymphatic SMC recruitment in multiple vascular beds. PDGFB is selectively expressed by lymphatic endothelial cells (LECs) of collecting vessels. LEC-specific deletion of Pdgfb prevented SMC recruitment causing dilation and failure of pulsatile contraction of collecting vessels. However, vessel remodelling and identity were unaffected. Unexpectedly, Pdgfb overexpression in LECs did not induce SMC recruitment to capillaries. This was explained by the demonstrated requirement of PDGFB extracellular matrix (ECM) retention for lymphatic SMC recruitment, and the low presence of PDGFB-binding ECM components around lymphatic capillaries. These results demonstrate the requirement of LEC-autonomous PDGFB expression and retention for SMC recruitment to lymphatic vessels, and suggest an ECM-controlled checkpoint that prevents SMC investment of capillaries, which is a common feature in lymphedematous skin.


Asunto(s)
Células Endoteliales/metabolismo , Vasos Linfáticos/anatomía & histología , Vasos Linfáticos/metabolismo , Miocitos del Músculo Liso/metabolismo , Proteínas Proto-Oncogénicas c-sis/metabolismo , Animales , Animales Recién Nacidos , Capilares/metabolismo , Comunicación Celular , Dermis/metabolismo , Matriz Extracelular/metabolismo , Femenino , Miembro Posterior/metabolismo , Masculino , Mesenterio/metabolismo , Morfogénesis , Tamaño de los Órganos
6.
Arterioscler Thromb Vasc Biol ; 35(2): 409-20, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25477343

RESUMEN

OBJECTIVE: Vascular smooth muscle cells (VSMC) are important for contraction, blood flow distribution, and regulation of blood vessel diameter, but to what extent they contribute to the integrity of blood vessels and blood-brain barrier function is less well understood. In this report, we explored the impact of the loss of VSMC in the Notch3(-/-) mouse on blood vessel integrity in the central nervous system. APPROACH AND RESULTS: Notch3(-/-) mice showed focal disruptions of the blood-brain barrier demonstrated by extravasation of tracers accompanied by fibrin deposition in the retinal vasculature. This blood-brain barrier leakage was accompanied by a regionalized and patchy loss of VSMC, with VSMC gaps predominantly in arterial resistance vessels of larger caliber. The loss of VSMC appeared to be caused by progressive degeneration of VSMC resulting in a gradual loss of VSMC marker expression and a progressive acquisition of an aberrant VSMC phenotype closer to the gaps, followed by enhanced apoptosis and cellular disintegration in the gaps. Arterial VSMC were the only mural cell type that was morphologically affected, despite Notch3 also being expressed in pericytes. Transcriptome analysis of isolated brain microvessels revealed gene expression changes in Notch3(-/-) mice consistent with loss of arterial VSMC and presumably secondary transcriptional changes were observed in endothelial genes, which may explain the compromised vascular integrity. CONCLUSIONS: We demonstrate that Notch3 is important for survival of VSMC, and reveal a critical role for Notch3 and VSMC in blood vessel integrity and blood-brain barrier function in the mammalian vasculature.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Receptores Notch/metabolismo , Actinas/genética , Actinas/metabolismo , Animales , Apoptosis , Biomarcadores/metabolismo , Vasos Sanguíneos/metabolismo , Barrera Hematoencefálica/patología , Permeabilidad Capilar , Células Endoteliales/metabolismo , Femenino , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Genotipo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Microvasos/metabolismo , Microvasos/patología , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , Pericitos/metabolismo , Fenotipo , Receptor Notch3 , Receptores Notch/deficiencia , Receptores Notch/genética , Vasos Retinianos/metabolismo , Vasos Retinianos/patología , Transducción de Señal , Transcripción Genética
7.
Cell Rep ; 43(3): 113911, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38446668

RESUMEN

Claudin-5 (CLDN5) is an endothelial tight junction protein essential for blood-brain barrier (BBB) formation. Abnormal CLDN5 expression is common in brain disease, and knockdown of Cldn5 at the BBB has been proposed to facilitate drug delivery to the brain. To study the consequences of CLDN5 loss in the mature brain, we induced mosaic endothelial-specific Cldn5 gene ablation in adult mice (Cldn5iECKO). These mice displayed increased BBB permeability to tracers up to 10 kDa in size from 6 days post induction (dpi) and ensuing lethality from 10 dpi. Single-cell RNA sequencing at 11 dpi revealed profound transcriptomic differences in brain endothelial cells regardless of their Cldn5 status in mosaic mice, suggesting major non-cell-autonomous responses. Reactive microglia and astrocytes suggested rapid cellular responses to BBB leakage. Our study demonstrates a critical role for CLDN5 in the adult BBB and provides molecular insight into the consequences and risks associated with CLDN5 inhibition.


Asunto(s)
Barrera Hematoencefálica , Células Endoteliales , Animales , Ratones , Transporte Biológico , Barrera Hematoencefálica/metabolismo , Encéfalo/metabolismo , Claudina-5/genética , Claudina-5/metabolismo , Células Endoteliales/metabolismo
8.
Cell Rep Methods ; 3(3): 100431, 2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-37056377

RESUMEN

Studying disease-related changes in the brain vasculature is warranted due to its crucial role in supplying oxygen and nutrients and removing waste and due to the anticipated vascular dysfunction in brain diseases. To this end, we have developed a protocol for fast and simple isolation of brain vascular fragments without the use of transgenic reporters. We used it to isolate and analyze 22,515 cells by single-cell RNA sequencing. The cells distributed into 23 distinct clusters corresponding to all known vascular and perivascular cell types in the brain. Western blot analysis also suggested that the protocol is suitable for proteomic analysis. We further adapted it for the establishment of primary cell cultures. The protocol generated highly reproducible results. In conclusion, we have developed a simple and robust brain vascular isolation protocol suitable for different experimental modalities, such as single-cell analyses, western blotting, and primary cell culture.


Asunto(s)
Sistema Cardiovascular , Proteómica , Ratones , Animales , Encéfalo/irrigación sanguínea , Células Cultivadas
9.
J Cereb Blood Flow Metab ; 42(2): 264-279, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34689641

RESUMEN

Platelet-derived growth factor B (PDGFB) released from endothelial cells is indispensable for pericyte recruitment during angiogenesis in embryonic and postnatal organ growth. Constitutive genetic loss-of-function of PDGFB leads to pericyte hypoplasia and the formation of a sparse, dilated and venous-shifted brain microvasculature with dysfunctional blood-brain barrier (BBB) in mice, as well as the formation of microvascular calcification in both mice and humans. Endothelial PDGFB is also expressed in the adult quiescent microvasculature, but here its importance is unknown. We show that deletion of Pdgfb in endothelial cells in 2-months-old mice causes a slowly progressing pericyte loss leading, at 12-18 months of age, to ≈50% decrease in endothelial:pericyte cell ratio, ≈60% decrease in pericyte longitudinal capillary coverage and >70% decrease in pericyte marker expression. Similar to constitutive loss of Pdgfb, this correlates with increased BBB permeability. However, in contrast to the constitutive loss of Pdgfb, adult-induced loss does not lead to vessel dilation, impaired arterio-venous zonation or the formation of microvascular calcifications. We conclude that PDFGB expression in quiescent adult microvascular brain endothelium is critical for the maintenance of pericyte coverage and normal BBB function, but that microvessel dilation, rarefaction, arterio-venous skewing and calcification reflect developmental roles of PDGFB.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Permeabilidad Capilar , Endotelio Vascular/metabolismo , Linfocinas/metabolismo , Pericitos/metabolismo , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Calcificación Vascular/metabolismo , Animales , Barrera Hematoencefálica/patología , Endotelio Vascular/patología , Regulación de la Expresión Génica , Linfocinas/genética , Ratones , Ratones Noqueados , Pericitos/patología , Factor de Crecimiento Derivado de Plaquetas/genética , Calcificación Vascular/genética , Calcificación Vascular/patología
10.
Vascul Pharmacol ; 112: 8-16, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30423447

RESUMEN

Branching morphogenesis is a fascinating process whereby a simple network of biological tubes increases its complexity by adding new branches to existing ones, generating an enlarged structure of interconnected tubes. Branching morphogenesis has been studied extensively in animals and much has been learned about the regulation of branching at the cellular and molecular level. Here, we discuss studies of the Drosophila trachea and of the vertebrate vasculature, which have revealed how new branches are formed and connect (anastomose), leading to the establishment of complex tubular networks. We briefly describe the cell behaviour underlying tracheal and vascular branching. Although similar at many levels, the branching and anastomosis processes characterized thus far show a number of differences in cell behaviour, resulting in somewhat different tube architectures in these two organs. We describe the similarities and the differences and discuss them in the context of their possible developmental significance. We finish by highlighting some old and new data, which suggest that live imaging of the development of capillary beds in adult animals might reveal yet unexplored endothelial behaviour of endothelial cells.


Asunto(s)
Vasos Sanguíneos/citología , Drosophila/citología , Células Endoteliales/citología , Células Epiteliales/citología , Neovascularización Fisiológica , Tráquea/citología , Pez Cebra/anatomía & histología , Animales , Vasos Sanguíneos/metabolismo , Comunicación Celular , Diferenciación Celular , Movimiento Celular , Proliferación Celular , Forma de la Célula , Drosophila/metabolismo , Células Endoteliales/metabolismo , Células Epiteliales/metabolismo , Ratones , Morfogénesis , Fenotipo , Transducción de Señal , Tráquea/metabolismo , Pez Cebra/metabolismo
11.
Sci Rep ; 8(1): 17462, 2018 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-30498224

RESUMEN

Diabetes mellitus is associated with cognitive impairment and various central nervous system pathologies such as stroke, vascular dementia, or Alzheimer's disease. The exact pathophysiology of these conditions is poorly understood. Recent reports suggest that hyperglycemia causes cerebral microcirculation pathology and blood-brain barrier (BBB) dysfunction and leakage. The majority of these reports, however, are based on methods including in vitro BBB modeling or streptozotocin-induced diabetes in rodents, opening questions regarding the translation of the in vitro findings to the in vivo situation, and possible direct effects of streptozotocin on the brain vasculature. Here we used a genetic mouse model of hyperglycemia (Ins2AKITA) to address whether prolonged systemic hyperglycemia induces BBB dysfunction and leakage. We applied a variety of methodologies to carefully evaluate BBB function and cellular integrity in vivo, including the quantification and visualization of specific tracers and evaluation of transcriptional and morphological changes in the BBB and its supporting cellular components. These experiments did neither reveal altered BBB permeability nor morphological changes of the brain vasculature in hyperglycemic mice. We conclude that prolonged hyperglycemia does not lead to BBB dysfunction, and thus the cognitive impairment observed in diabetes may have other causes.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Permeabilidad Capilar , Hiperglucemia/metabolismo , Hiperglucemia/patología , Pericitos/metabolismo , Pericitos/patología , Animales , Recuento de Células , Manejo de la Enfermedad , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Hiperglucemia/genética , Inmunohistoquímica , Masculino , Ratones , Ratones Noqueados , Microglía/metabolismo
12.
Sci Data ; 5: 180160, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-30129931

RESUMEN

Vascular diseases are major causes of death, yet our understanding of the cellular constituents of blood vessels, including how differences in their gene expression profiles create diversity in vascular structure and function, is limited. In this paper, we describe a single-cell RNA sequencing (scRNA-seq) dataset that defines vascular and vessel-associated cell types and subtypes in mouse brain and lung. The dataset contains 3,436 single cell transcriptomes from mouse brain, which formed 15 distinct clusters corresponding to cell (sub)types, and another 1,504 single cell transcriptomes from mouse lung, which formed 17 cell clusters. In order to allow user-friendly access to our data, we constructed a searchable database (http://betsholtzlab.org/VascularSingleCells/database.html). Our dataset constitutes a comprehensive molecular atlas of vascular and vessel-associated cell types in the mouse brain and lung, and as such provides a strong foundation for future studies of vascular development and diseases.


Asunto(s)
Vasos Sanguíneos , Encéfalo/irrigación sanguínea , Pulmón/irrigación sanguínea , Transcriptoma , Animales , Vasos Sanguíneos/citología , Vasos Sanguíneos/fisiología , Bases de Datos Factuales , Células Endoteliales/fisiología , Ratones , Miocitos del Músculo Liso/fisiología , Pericitos/fisiología , Análisis de Secuencia de ARN , Análisis de la Célula Individual
13.
Nat Genet ; 45(9): 1077-82, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23913003

RESUMEN

Calcifications in the basal ganglia are a common incidental finding and are sometimes inherited as an autosomal dominant trait (idiopathic basal ganglia calcification (IBGC)). Recently, mutations in the PDGFRB gene coding for the platelet-derived growth factor receptor ß (PDGF-Rß) were linked to IBGC. Here we identify six families of different ancestry with nonsense and missense mutations in the gene encoding PDGF-B, the main ligand for PDGF-Rß. We also show that mice carrying hypomorphic Pdgfb alleles develop brain calcifications that show age-related expansion. The occurrence of these calcium depositions depends on the loss of endothelial PDGF-B and correlates with the degree of pericyte and blood-brain barrier deficiency. Thus, our data present a clear link between Pdgfb mutations and brain calcifications in mice, as well as between PDGFB mutations and IBGC in humans.


Asunto(s)
Enfermedades de los Ganglios Basales/genética , Enfermedades de los Ganglios Basales/patología , Calcinosis/genética , Mutación , Proteínas Proto-Oncogénicas c-sis/genética , Sustitución de Aminoácidos , Animales , Enfermedades de los Ganglios Basales/diagnóstico , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Femenino , Orden Génico , Humanos , Imagen por Resonancia Magnética , Masculino , Ratones , Ratones Noqueados , Linaje , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA