Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 551(7682): 585-589, 2017 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-29143823

RESUMEN

A Western lifestyle with high salt consumption can lead to hypertension and cardiovascular disease. High salt may additionally drive autoimmunity by inducing T helper 17 (TH17) cells, which can also contribute to hypertension. Induction of TH17 cells depends on gut microbiota; however, the effect of salt on the gut microbiome is unknown. Here we show that high salt intake affects the gut microbiome in mice, particularly by depleting Lactobacillus murinus. Consequently, treatment of mice with L. murinus prevented salt-induced aggravation of actively induced experimental autoimmune encephalomyelitis and salt-sensitive hypertension by modulating TH17 cells. In line with these findings, a moderate high-salt challenge in a pilot study in humans reduced intestinal survival of Lactobacillus spp., increased TH17 cells and increased blood pressure. Our results connect high salt intake to the gut-immune axis and highlight the gut microbiome as a potential therapeutic target to counteract salt-sensitive conditions.


Asunto(s)
Microbioma Gastrointestinal/efectos de los fármacos , Lactobacillus/efectos de los fármacos , Lactobacillus/aislamiento & purificación , Cloruro de Sodio/farmacología , Células Th17/efectos de los fármacos , Células Th17/inmunología , Animales , Autoinmunidad/efectos de los fármacos , Presión Sanguínea/efectos de los fármacos , Modelos Animales de Enfermedad , Encefalomielitis Autoinmune Experimental/inducido químicamente , Encefalomielitis Autoinmune Experimental/microbiología , Encefalomielitis Autoinmune Experimental/patología , Encefalomielitis Autoinmune Experimental/terapia , Heces/microbiología , Humanos , Hipertensión/inducido químicamente , Ácidos Indolacéticos/metabolismo , Indoles/metabolismo , Intestinos/citología , Intestinos/efectos de los fármacos , Intestinos/inmunología , Intestinos/microbiología , Lactobacillus/inmunología , Activación de Linfocitos/efectos de los fármacos , Recuento de Linfocitos , Masculino , Ratones , Proyectos Piloto , Cloruro de Sodio/administración & dosificación , Simbiosis , Células Th17/citología , Triptófano/metabolismo
2.
Eur J Appl Physiol ; 123(6): 1359-1368, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36849666

RESUMEN

PURPOSE: We present a methodological overview of a respiration chamber at the Experimental and Clinical Research Center in Berlin, Germany. Since 2010, we investigated 750 healthy subjects and patients with various diseases. We routinely measure resting energy expenditure (REE), dietary-induced thermogenesis, and activity energy expenditure. METHODS: The chamber is a pull calorimeter with a total volume of 11,000 L. The majority of measurements is done with a flow rate of 120 L/min, yielding a favorable time constant of 1.53 h. The gas analysis system consists of two paramagnetic O2 sensors and two infrared CO2 sensors, one for incoming and one for outgoing air samples. O2 and CO2 sensors are calibrated simultaneously before each measurement with a 6 min calibration routine. To verify the accuracy of the whole the calorimetric system, it is validated every 2 weeks by 2 h acetone burning tests. RESULTS: Validation factors (calculated/measured) of 20 representative 2 h acetone burning tests were 1.03 ± 0.03 for [Formula: see text], 1.02 ± 0.02 for [Formula: see text], 0.99 ± 0.02 for RER, and 1.03 ± 0.03 for EE. Four repeated 60 min REE measurements of a healthy woman showed variabilities of 231.9 ± 4.8 ml/min for [Formula: see text] (CV 2.1%), 166.0 ± 6.3 ml/min for [Formula: see text] (CV 3.8%), 0.73 ± 0.03 for RER (CV 4.6%), and 4.55 ± 0.07 kJ/min for EE (CV 1.6%). CONCLUSIONS: The data presented show that our respiration chamber produces precise and valid EE measurements with an exceptionally fast responsiveness.


Asunto(s)
Acetona , Dióxido de Carbono , Femenino , Humanos , Berlin , Calorimetría Indirecta , Metabolismo Energético , Respiración , Estudios de Casos y Controles
3.
Circulation ; 144(2): 144-158, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-33906377

RESUMEN

BACKGROUND: Dietary high salt (HS) is a leading risk factor for mortality and morbidity. Serum sodium transiently increases postprandially but can also accumulate at sites of inflammation affecting differentiation and function of innate and adaptive immune cells. Here, we focus on how changes in extracellular sodium, mimicking alterations in the circulation and tissues, affect the early metabolic, transcriptional, and functional adaption of human and murine mononuclear phagocytes. METHODS: Using Seahorse technology, pulsed stable isotope-resolved metabolomics, and enzyme activity assays, we characterize the central carbon metabolism and mitochondrial function of human and murine mononuclear phagocytes under HS in vitro. HS as well as pharmacological uncoupling of the electron transport chain under normal salt is used to analyze mitochondrial function on immune cell activation and function (as determined by Escherichiacoli killing and CD4+ T cell migration capacity). In 2 independent clinical studies, we analyze the effect of a HS diet during 2 weeks (URL: http://www.clinicaltrials.gov. Unique identifier: NCT02509962) and short-term salt challenge by a single meal (URL: http://www.clinicaltrials.gov. Unique identifier: NCT04175249) on mitochondrial function of human monocytes in vivo. RESULTS: Extracellular sodium was taken up into the intracellular compartment, followed by the inhibition of mitochondrial respiration in murine and human macrophages. Mechanistically, HS reduces mitochondrial membrane potential, electron transport chain complex II activity, oxygen consumption, and ATP production independently of the polarization status of macrophages. Subsequently, cell activation is altered with improved bactericidal function in HS-treated M1-like macrophages and diminished CD4+ T cell migration in HS-treated M2-like macrophages. Pharmacological uncoupling of the electron transport chain under normal salt phenocopies HS-induced transcriptional changes and bactericidal function of human and murine mononuclear phagocytes. Clinically, also in vivo, rise in plasma sodium concentration within the physiological range reversibly reduces mitochondrial function in human monocytes. In both a 14-day and single meal HS challenge, healthy volunteers displayed a plasma sodium increase of [Formula: see text] and [Formula: see text] respectively, that correlated with decreased monocytic mitochondrial oxygen consumption. CONCLUSIONS: Our data identify the disturbance of mitochondrial respiration as the initial step by which HS mechanistically influences immune cell function. Although these functional changes might help to resolve bacterial infections, a shift toward proinflammation could accelerate inflammatory cardiovascular disease.


Asunto(s)
Mitocondrias/metabolismo , Fagocitos/metabolismo , Cloruro de Sodio Dietético/efectos adversos , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Factores de Riesgo , Adulto Joven
4.
Rev Endocr Metab Disord ; 23(4): 773-805, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-34951003

RESUMEN

Obesity is a worldwide disease associated with multiple severe adverse consequences and comorbid conditions. While an increased body weight is the defining feature in obesity, etiologies, clinical phenotypes and treatment responses vary between patients. These variations can be observed within individual treatment options which comprise lifestyle interventions, pharmacological treatment, and bariatric surgery. Bariatric surgery can be regarded as the most effective treatment method. However, long-term weight regain is comparably frequent even for this treatment and its application is not without risk. A prognostic tool that would help predict the effectivity of the individual treatment methods in the long term would be essential in a personalized medicine approach. In line with this objective, an increasing number of studies have combined neuroimaging and computational modeling to predict treatment outcome in obesity. In our review, we begin by outlining the central nervous mechanisms measured with neuroimaging in these studies. The mechanisms are primarily related to reward-processing and include "incentive salience" and psychobehavioral control. We then present the diverse neuroimaging methods and computational prediction techniques applied. The studies included in this review provide consistent support for the importance of incentive salience and psychobehavioral control for treatment outcome in obesity. Nevertheless, further studies comprising larger sample sizes and rigorous validation processes are necessary to answer the question of whether or not the approach is sufficiently accurate for clinical real-world application.


Asunto(s)
Cirugía Bariátrica , Obesidad , Humanos , Estilo de Vida , Neuroimagen/métodos , Obesidad/complicaciones , Obesidad/diagnóstico por imagen , Obesidad/terapia
5.
BMC Neurol ; 22(1): 479, 2022 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-36517734

RESUMEN

BACKGROUND: Large-scale disease overarching longitudinal data are rare in the field of neuroimmunology. However, such data could aid early disease stratification, understanding disease etiology and ultimately improve treatment decisions. The Berlin Registry of Neuroimmunological Entities (BERLimmun) is a longitudinal prospective observational study, which aims to identify diagnostic, disease activity and prognostic markers and to elucidate the underlying pathobiology of neuroimmunological diseases. METHODS: BERLimmun is a single-center prospective observational study of planned 650 patients with neuroimmunological disease entity (e.g. but not confined to: multiple sclerosis, isolated syndromes, neuromyelitis optica spectrum disorders) and 85 healthy participants with 15 years of follow-up. The protocol comprises annual in-person visits with multimodal standardized assessments of medical history, rater-based disability staging, patient-report of lifestyle, diet, general health and disease specific symptoms, tests of motor, cognitive and visual functions, structural imaging of the neuroaxis and retina and extensive sampling of biological specimen. DISCUSSION: The BERLimmun database allows to investigate multiple key aspects of neuroimmunological diseases, such as immunological differences between diagnoses or compared to healthy participants, interrelations between findings of functional impairment and structural change, trajectories of change for different biomarkers over time and, importantly, to study determinants of the long-term disease course. BERLimmun opens an opportunity to a better understanding and distinction of neuroimmunological diseases.


Asunto(s)
Esclerosis Múltiple , Neuromielitis Óptica , Humanos , Acuaporina 4 , Autoanticuerpos , Berlin , Estudios Longitudinales , Esclerosis Múltiple/diagnóstico , Glicoproteína Mielina-Oligodendrócito , Neuromielitis Óptica/diagnóstico , Estudios Observacionales como Asunto , Sistema de Registros
6.
Curr Opin Clin Nutr Metab Care ; 24(5): 402-410, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34155152

RESUMEN

PURPOSE OF REVIEW: It is accepted that several chronic diseases are associated with inflammation. Dietary habits and the consumption of certain nutrients have been shown to influence inflammation, reflected by inflammatory cytokines. In this narrative review, we discuss currently developed tools to assess the inflammatory potential of diets and compare them with established tools. RECENT FINDINGS: Four new indices were recently developed. The Inflammatory Score of the Diet is a modified version of the established Dietary Inflammatory Index. The novel Empirical Dietary Inflammatory Index works without previous dietary intake assessment and the Anti-Inflammatory Diet Index was specifically developed in a northern European population. The Dietary and Lifestyle Inflammation Scores addresses additional confounders. The informative value of dietary indices relies on the accuracy and completeness of dietary intake assessment. SUMMARY: Dietary inflammatory indices are important tools to assess, compare and validate the inflammatory potential of diets across populations without the need for biomarker assessments. They allow to investigate associations between an (anti)-inflammatory diet with disease risk and course. Although the Dietary Inflammatory Index remains the most used index worldwide, currently developed indices allow more flexibility, have a different focus or simplify assessment. Additional foods, that were recently shown to modulate inflammation, but are not (fully) considered yet, may deserve more attention in the future.


Asunto(s)
Dieta , Estilo de Vida , Antiinflamatorios , Conducta Alimentaria , Humanos , Inflamación
7.
Int J Obes (Lond) ; 44(5): 1119-1128, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31819201

RESUMEN

BACKGROUND: Physical activity improves insulin sensitivity in obesity. Hypoxia training is claimed to augment this effect. We tested the hypothesis that normobaric hypoxia training would improve insulin sensitivity in obese patients with metabolic syndrome. METHODS: In a randomized controlled trial, 23 obese men with metabolic syndrome who were not informed of the FiO2 conditions underwent a 6-week physical exercise intervention under ambient (n = 11; FiO2 21%) conditions or hypoxia (n = 12; FiO2 15%) using a normobaric hypoxic chamber. Three 60-min sessions of interval training were performed each week at 60% of individual V̇O2max. Assessment of myocellular insulin sensitivity by euglycemic hyperinsulinemic clamp was performed in 21 of these subjects before and after 6 weeks of training. Comprehensive phenotyping also included biopsies of subcutaneous adipose tissues. RESULTS: The intermittent moderate physical exercise protocol did not substantially change the myocellular insulin sensitivity within 6 weeks under normoxic conditions (ISIClamp: 0.035 (IQR 0.016-0.075) vs. 0.037 (IQR 0.026-0.056) mg* kg-1 *min-1/(mU* l-1); p = 0.767). In contrast, ISIClamp improved during hypoxia training (0.028 (IQR 0.018-0.035) vs. 0.038 (IQR 0.024-0.060) mg * kg-1 *min-1/(mU *l-1); p < 0.05). Between group comparison of ISIClamp change revealed a small difference between groups (Cohen's d = 0.26). Within the hypoxic group, improvement of ISIClamp during training was associated with individual increase of circulating vascular endothelial growth factor (VEGF) levels (r = 0.678, p = 0.015), even if mean VEGF levels were not modified by any training condition. Atrial natriuretic peptide (ANP) system components were not associated with increased ISIClamp during hypoxic training. CONCLUSIONS: Physical training under hypoxic conditions could partially augment the favorable effects of exercise alone on myocellular insulin sensitivity in obese men with metabolic syndrome. Concomitant changes in VEGF might represent an underlying pathophysiological mechanism.


Asunto(s)
Ejercicio Físico/fisiología , Resistencia a la Insulina/fisiología , Síndrome Metabólico , Músculo Esquelético/metabolismo , Obesidad , Anciano , Humanos , Hipoxia , Masculino , Síndrome Metabólico/complicaciones , Síndrome Metabólico/metabolismo , Síndrome Metabólico/terapia , Persona de Mediana Edad , Obesidad/complicaciones , Obesidad/metabolismo , Obesidad/terapia , Oxígeno/metabolismo , Factor A de Crecimiento Endotelial Vascular/sangre
8.
Acta Neuropathol ; 130(6): 799-814, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26521072

RESUMEN

The functional dynamics and cellular sources of oxidative stress are central to understanding MS pathogenesis but remain elusive, due to the lack of appropriate detection methods. Here we employ NAD(P)H fluorescence lifetime imaging to detect functional NADPH oxidases (NOX enzymes) in vivo to identify inflammatory monocytes, activated microglia, and astrocytes expressing NOX1 as major cellular sources of oxidative stress in the central nervous system of mice affected by experimental autoimmune encephalomyelitis (EAE). This directly affects neuronal function in vivo, indicated by sustained elevated neuronal calcium. The systemic involvement of oxidative stress is mirrored by overactivation of NOX enzymes in peripheral CD11b(+) cells in later phases of both MS and EAE. This effect is antagonized by systemic intake of the NOX inhibitor and anti-oxidant epigallocatechin-3-gallate. Together, this persistent hyper-activation of oxidative enzymes suggests an "oxidative stress memory" both in the periphery and CNS compartments, in chronic neuroinflammation.


Asunto(s)
Encefalomielitis Autoinmune Experimental/enzimología , Esclerosis Múltiple/enzimología , NADPH Oxidasas/metabolismo , Estrés Oxidativo/fisiología , Animales , Antioxidantes/uso terapéutico , Astrocitos/efectos de los fármacos , Astrocitos/enzimología , Astrocitos/patología , Antígeno CD11b/metabolismo , Calcio/metabolismo , Catequina/análogos & derivados , Catequina/uso terapéutico , Enfermedad Crónica , Progresión de la Enfermedad , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/patología , Inhibidores Enzimáticos/uso terapéutico , Acetato de Glatiramer/uso terapéutico , Humanos , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Fluorescente/métodos , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/patología , NADPH Oxidasas/antagonistas & inhibidores , Neuronas/efectos de los fármacos , Neuronas/enzimología , Neuronas/patología , Estrés Oxidativo/efectos de los fármacos
9.
Cerebellum ; 13(4): 440-6, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24604678

RESUMEN

Autosomal dominant spinocerebellar ataxia type 1 (SCA1) is a genetic movement disorder with neuronal loss in the cerebellum, brainstem, and other cerebral regions. The course of SCA1 is accompanied with progressive weight loss and amyotrophia-the causes for that remain, however, unclear. We tested the hypothesis that an imbalance between energy intake and expenditure contributes to weight loss in SCA1 patients. Anthropometric measures, energy intake (food records), and resting (calorimetry) and free-living (accelerometry) energy expenditure were determined in 10 patients with genetically proven SCA1 and 10 healthy controls closely matched for age, sex, and body composition. At rest, energy expenditure per kilogram fat-free mass was 22 % and fat oxidation rate 28 % higher in patients vs. controls indicating an increased catabolic state. Under free-living conditions, total energy expenditure and daily step counts were significantly lower in patients vs. controls. However, most patients were able to maintain energy intake and expenditure in a balanced state. Resting energy expenditure, fat oxidation, and activity energy expenditure per step count are higher, whereas 24-h total energy expenditure is lower in SCA1 patients vs. healthy controls. An altered autonomic nervous system activity, gait ataxia, and a decreased physical activity might contribute to this outcome.


Asunto(s)
Ingestión de Energía/fisiología , Metabolismo Energético/fisiología , Enfermedades Metabólicas/etiología , Ataxias Espinocerebelosas/complicaciones , Acelerometría , Adolescente , Adulto , Anciano , Antropometría , Glucemia , Calorimetría , Estudios de Casos y Controles , Ayuno , Femenino , Humanos , Insulina/sangre , Resistencia a la Insulina , Masculino , Enfermedades Metabólicas/sangre , Enfermedades Metabólicas/diagnóstico , Persona de Mediana Edad , Ataxias Espinocerebelosas/sangre , Ataxias Espinocerebelosas/genética , Estadísticas no Paramétricas , Adulto Joven
10.
Front Physiol ; 14: 1057592, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36776973

RESUMEN

Objective: In the field of non-treatable muscular dystrophies, promising new gene and cell therapies are being developed and are entering clinical trials. Objective assessment of therapeutic effects on motor function is mandatory for economical and ethical reasons. Main shortcomings of existing measurements are discontinuous data collection in artificial settings as well as a major focus on walking, neglecting the importance of hand and arm movements for patients' independence. We aimed to create a digital tool to measure muscle function with an emphasis on upper limb motility. Methods: suMus provides a custom-made App running on smartwatches. Movement data are sent to the backend of a suMus web-based platform, from which they can be extracted as CSV data. Fifty patients with neuromuscular diseases assessed the pool of suMus activities in a first orientation phase. suMus performance was hence validated in four upper extremity exercises based on the feedback of the orientation phase. We monitored the arm metrics in a cohort of healthy volunteers using the suMus application, while completing each exercise at low frequency in a metabolic chamber. Collected movement data encompassed average acceleration, rotation rate as well as activity counts. Spearman rank tests correlated movement data with energy expenditure from the metabolic chamber. Results: Our novel application "suMus," sum of muscle activity, collects muscle movement data plus Patient-Related-Outcome-Measures, sends real-time feedback to patients and caregivers and provides, while ensuring data protection, a long-term follow-up of disease course. The application was well received from the patients during the orientation phase. In our pilot study, energy expenditure did not differ between overnight fasted and non-fasted participants. Acceleration ranged from 1.7 ± 0.7 to 3.2 ± 0.5 m/sec2 with rotation rates between 0.9 ± 0.5 and 2.0 ± 3.4 rad/sec. Acceleration and rotation rate as well as derived activity counts correlated with energy expenditure values measured in the metabolic chamber for one exercise (r = 0.58, p < 0.03). Conclusion: In the analysis of slow frequency movements of upper extremities, the integration of the suMus application with smartwatch sensors characterized motion parameters, thus supporting a use in clinical trial outcome measures. Alternative methodologies need to complement indirect calorimetry in validating accelerometer-derived energy expenditure data.

11.
Hepatology ; 53(5): 1504-14, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21400557

RESUMEN

UNLABELLED: Obesity-related hepatic steatosis is a major risk factor for metabolic and cardiovascular disease. Fat reduced hypocaloric diets are able to relieve the liver from ectopically stored lipids. We hypothesized that the widely used low carbohydrate hypocaloric diets are similarly effective in this regard. A total of 170 overweight and obese, otherwise healthy subjects were randomized to either reduced carbohydrate (n = 84) or reduced fat (n = 86), total energy restricted diet (-30% of energy intake before diet) for 6 months. Body composition was estimated by bioimpedance analyses and abdominal fat distribution by magnetic resonance tomography. Subjects were also submitted to fat spectroscopy of liver and oral glucose tolerance testing. In all, 102 subjects completed the diet intervention with measurements of intrahepatic lipid content. Both hypocaloric diets decreased body weight, total body fat, visceral fat, and intrahepatic lipid content. Subjects with high baseline intrahepatic lipids (>5.56%) lost ≈7-fold more intrahepatic lipids compared with those with low baseline values (<5.56%) irrespective of diet composition. In contrast, changes in visceral fat mass and insulin sensitivity were similar between subgroups, with low and high baseline intrahepatic lipids. CONCLUSION: A prolonged hypocaloric diet low in carbohydrates and high in fat has the same beneficial effects on intrahepatic lipid accumulation as the traditional low-fat hypocaloric diet. The decrease in intrahepatic lipids appears to be independent of visceral fat loss and is not tightly coupled with changes in whole body insulin sensitivity during 6 months of an energy restricted diet.


Asunto(s)
Restricción Calórica , Dieta con Restricción de Grasas , Hígado Graso/dietoterapia , Sobrepeso/dietoterapia , Adulto , Dieta Baja en Carbohidratos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Obesidad/dietoterapia , Estudios Prospectivos
12.
Front Physiol ; 13: 899636, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35685284

RESUMEN

Context: The use of daytime napping as a countermeasure in sleep disturbances has been recommended but its physiological evaluation at high altitude is limited. Objective: To evaluate the neuroendocrine response to hypoxic stress during a daytime nap and its cognitive impact. Design, Subject, and Setting: Randomized, single-blind, three period cross-over pilot study conducted with 15 healthy lowlander subjects (8 women) with a mean (SD) age of 29(6) years (Clinicaltrials identifier: NCT04146857, https://clinicaltrials.gov/ct2/show/NCT04146857?cond=napping&draw=3&rank=12). Interventions: Volunteers underwent a polysomnography, hematological and cognitive evaluation around a 90 min midday nap, being allocated to a randomized sequence of three conditions: normobaric normoxia (NN), normobaric hypoxia at FiO2 14.7% (NH15) and 12.5% (NH13), with a washout period of 1 week between conditions. Results: Primary outcome was the interbeat period measured by the RR interval with electrocardiogram. Compared to normobaric normoxia, RR during napping was shortened by 57 and 206 ms under NH15 and NH13 conditions, respectively (p < 0.001). Sympathetic predominance was evident by heart rate variability analysis and increased epinephrine levels. Concomitantly, there were significant changes in endocrine parameters such as erythropoietin (∼6 UI/L) and cortisol (∼100 nmol/L) (NH13 vs. NN, p < 0.001). Cognitive evaluation revealed changes in the color-word Stroop test. Additionally, although sleep efficiency was preserved, polysomnography showed lesser deep sleep and REM sleep, and periodic breathing, predominantly in men. Conclusion: Although napping in simulated altitude does not appear to significantly affect cognitive performance, sex-dependent changes in cardiac autonomic modulation and respiratory pattern should be considered before napping is prescribed as a countermeasure.

13.
Nutrients ; 14(2)2022 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-35057434

RESUMEN

High salt intake ranks among the most important risk factors for noncommunicable diseases. Western diets, which are typically high in salt, are associated with a high prevalence of obesity. High salt is thought to be a potential risk factor for obesity independent of energy intake, although the underlying mechanisms are insufficiently understood. A high salt diet could influence energy expenditure (EE), specifically diet-induced thermogenesis (DIT), which accounts for about 10% of total EE. We aimed to investigate the influence of high salt on DIT. In a randomized, double-blind, placebo-controlled, parallel-group study, 40 healthy subjects received either 6 g/d salt (NaCl) or placebo in capsules over 2 weeks. Before and after the intervention, resting EE, DIT, body composition, food intake, 24 h urine analysis, and blood pressure were obtained. EE was measured by indirect calorimetry after a 12 h overnight fast and a standardized 440 kcal meal. Thirty-eight subjects completed the study. Salt intake from foods was 6 g/d in both groups, resulting in a total salt intake of 12 g/d in the salt group and 6 g/d in the placebo group. Urine sodium increased by 2.29 g/d (p < 0.0001) in the salt group, indicating overall compliance. The change in DIT differed significantly between groups (placebo vs. salt, p = 0.023). DIT decreased by 1.3% in the salt group (p = 0.048), but increased by 0.6% in the placebo group (NS). Substrate oxidation indicated by respiratory exchange ratio, body composition, resting blood pressure, fluid intake, hydration, and urine volume did not change significantly in either group. A moderate short-term increase in salt intake decreased DIT after a standardized meal. This effect could at least partially contribute to the observed weight gain in populations consuming a Western diet high in salt.


Asunto(s)
Dieta , Obesidad/etiología , Cloruro de Sodio Dietético/administración & dosificación , Termogénesis/efectos de los fármacos , Adulto , Presión Sanguínea , Composición Corporal , Calorimetría Indirecta , Método Doble Ciego , Metabolismo Energético/fisiología , Femenino , Voluntarios Sanos , Humanos , Masculino , Placebos/administración & dosificación , Placebos/farmacología , Factores de Riesgo , Sodio/orina , Cloruro de Sodio Dietético/farmacología , Termogénesis/fisiología
14.
Sci Rep ; 12(1): 16578, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36195647

RESUMEN

The purpose of the study was to develop prediction models to estimate physical activity (PA)-related energy expenditure (AEE) based on accelerometry and additional variables in free-living adults. In 50 volunteers (20-69 years) PA was determined over 2 weeks using the hip-worn Actigraph GT3X + as vector magnitude (VM) counts/minute. AEE was calculated based on total daily EE (measured by doubly-labeled water), resting EE (indirect calorimetry), and diet-induced thermogenesis. Anthropometry, body composition, blood pressure, heart rate, fitness, sociodemographic and lifestyle factors, PA habits and food intake were assessed. Prediction models were developed by context-grouping of 75 variables, and within-group stepwise selection (stage I). All significant variables were jointly offered for second stepwise regression (stage II). Explained AEE variance was estimated based on variables remaining significant. Alternative scenarios with different availability of groups from stage I were simulated. When all 11 significant variables (selected in stage I) were jointly offered for stage II stepwise selection, the final model explained 70.7% of AEE variance and included VM-counts (33.8%), fat-free mass (26.7%), time in moderate PA + walking (6.4%) and carbohydrate intake (3.9%). Alternative scenarios explained 53.8-72.4% of AEE. In conclusion, accelerometer counts and fat-free mass explained most of variance in AEE. Prediction was further improved by PA information from questionnaires. These results may be used for AEE prediction in studies using accelerometry.


Asunto(s)
Metabolismo Energético , Condiciones Sociales , Acelerometría , Adulto , Carbohidratos , Metabolismo Energético/fisiología , Ejercicio Físico/fisiología , Humanos , Agua
15.
Nutrients ; 14(1)2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-35011024

RESUMEN

Each year in March, adherents of the Bahá'í faith abstain from eating and drinking from sunrise to sunset for 19 days. Thus, Bahá'í fasting (BF) can be considered as a form of daytime dry fasting. We investigated whether BF decreased energy expenditure after a meal and whether it improved anthropometric measures and systemic and tissue-level metabolic parameters. This was a self-controlled cohort study with 11 healthy men. We measured anthropometric parameters, metabolic markers in venous blood and pre- and postprandial energy metabolism at systemic (indirect calorimetry) and tissue (adipose tissue and skeletal muscle microdialysis) level, both before and during BF. During BF, we found reduced body weight, body mass index, body fat and blood glucose. Postprandial increase in energy expenditure was lower and diet-induced thermogenesis tended to be lower as well. In adipose tissue, perfusion, glucose supply and lipolysis were increased. In skeletal muscle, tissue perfusion did not change. Glucose supply and lipolysis were decreased. Glucose oxidation was increased, indicating improved insulin sensitivity. BF may be a promising approach to losing weight and improving metabolism and health. However, outside the context of religiously motivated fasting, skipping a meal in the evening (dinner cancelling) might be recommended, as metabolism appeared to be reduced in the evening.


Asunto(s)
Composición Corporal , Metabolismo Energético/fisiología , Ayuno/fisiología , Religión , Tejido Adiposo/metabolismo , Adulto , Estudios de Cohortes , Glucosa/metabolismo , Humanos , Resistencia a la Insulina , Lipólisis , Masculino , Oxidación-Reducción , Periodo Posprandial , Pérdida de Peso
16.
Cardiovasc Res ; 117(3): 863-875, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-32374853

RESUMEN

AIMS: Recent technical developments have allowed the study of the human microbiome to accelerate at an unprecedented pace. Methodological differences may have considerable impact on the results obtained. Thus, we investigated how different storage, isolation, and DNA extraction methods can influence the characterization of the intestinal microbiome, compared to the impact of true biological signals such as intraindividual variability, nutrition, health, and demographics. METHODS AND RESULTS: An observative cohort study in 27 healthy subjects was performed. Participants were instructed to collect stool samples twice spaced by a week, using six different methods (naive and Zymo DNA/RNA Shield on dry ice, OMNIgene GUT, RNALater, 95% ethanol, Zymo DNA/RNA Shield at room temperature). DNA extraction from all samples was performed comparatively using QIAamp Power Fecal and ZymoBIOMICS DNA Kits. 16S rRNA sequencing of the gut microbiota as well as qPCRs were performed on the isolated DNA. Metrics included alpha diversity as well as multivariate and univariate comparisons of samples, controlling for covariate patterns computationally. Interindividual differences explained 7.4% of overall microbiome variability, whereas the choice of DNA extraction method explained a further 5.7%. At phylum level, the tested kits differed in their recovery of Gram-positive bacteria, which is reflected in a significantly skewed enterotype distribution. CONCLUSION: DNA extraction methods had the highest impact on observed microbiome variability, and were comparable to interindividual differences, thus may spuriously mimic the microbiome signatures of various health and nutrition factors. Conversely, collection methods had a relatively small influence on microbiome composition. The present study provides necessary insight into the technical variables which can lead to divergent results from seemingly similar study designs. We anticipate that these results will contribute to future efforts towards standardization of microbiome quantification procedures in clinical research.


Asunto(s)
Bacterias/aislamiento & purificación , ADN Bacteriano/aislamiento & purificación , Microbioma Gastrointestinal , Intestinos/microbiología , ARN Ribosómico 16S/aislamiento & purificación , Manejo de Especímenes , Adulto , Bacterias/clasificación , Bacterias/genética , ADN Bacteriano/genética , Heces/microbiología , Femenino , Alemania , Voluntarios Sanos , Humanos , Masculino , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa , ARN Ribosómico 16S/genética , Ribotipificación
17.
Front Nutr ; 8: 662310, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34395487

RESUMEN

Background: Religiously motivated Bahá'í fasting (BF) is a form of intermittent dry fasting celebrated by abstaining from food and drinks during daylight hours every year in March for 19 consecutive days. Aim: To test the safety and effects of BF on hydration, metabolism, and the circadian clock. Methods: Thirty-four healthy Bahá'í volunteers (15 women) participated in this prospective, exploratory cohort study. Laboratory examinations were carried out in four study visits: before fasting (V0), in the third week of fasting (V1) as well as 3 weeks (V3) and 3 months (V4) after fasting. Data collection included blood and urine samples, anthropometric measurements and bioelectrical impedance analysis. At V0 and V1, 24- and 12-hour urine and serum osmolality were measured. At V0-V2, alterations in the circadian clock phase were monitored in 16 participants. Our study was augmented by an additional survey with 144 healthy Bahá'í volunteers filling out questionnaires and with subgroups attending metabolic measurements (n = 11) and qualitative interviews (n = 13), the results of which will be published separately. Results: Exploratory data analysis revealed that serum osmolality (n = 34, p < 0.001) and 24-hour urine osmolality (n = 34, p = 0.003) decreased during daytime fasting but remained largely within the physiological range and returned to pre-fasting levels during night hours. BMI (body mass index), total body fat mass, and resting metabolic rate decreased during fasting (n = 34, p < 0.001), while body cell mass and body water appeared unchanged. The circadian phase estimated by transcript biomarkers of blood monocytes advanced by 1.1 h (n = 16, p < 0.005) during fasting and returned to pre-fasting values 3 weeks after fasting. Most observed changes were not detectable anymore 3 months after fasting. Conclusions: Results indicate that BF (Bahá'í fasting) is safe, has no negative effects on hydration, can improve fat metabolism and can cause transient phase shifts of circadian rhythms. Trial Registration:https://www.clinicaltrials.gov/, identifier: NCT03443739.

18.
Nat Commun ; 12(1): 1970, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33785752

RESUMEN

Periods of fasting and refeeding may reduce cardiometabolic risk elevated by Western diet. Here we show in the substudy of NCT02099968, investigating the clinical parameters, the immunome and gut microbiome exploratory endpoints, that in hypertensive metabolic syndrome patients, a 5-day fast followed by a modified Dietary Approach to Stop Hypertension diet reduces systolic blood pressure, need for antihypertensive medications, body-mass index at three months post intervention compared to a modified Dietary Approach to Stop Hypertension diet alone. Fasting alters the gut microbiome, impacting bacterial taxa and gene modules associated with short-chain fatty acid production. Cross-system analyses reveal a positive correlation of circulating mucosa-associated invariant T cells, non-classical monocytes and CD4+ effector T cells with systolic blood pressure. Furthermore, regulatory T cells positively correlate with body-mass index and weight. Machine learning analysis of baseline immunome or microbiome data predicts sustained systolic blood pressure response within the fasting group, identifying CD8+ effector T cells, Th17 cells and regulatory T cells or Desulfovibrionaceae, Hydrogenoanaerobacterium, Akkermansia, and Ruminococcaceae as important contributors to the model. Here we report that the high-resolution multi-omics data highlight fasting as a promising non-pharmacological intervention for the treatment of high blood pressure in metabolic syndrome patients.


Asunto(s)
Presión Sanguínea/fisiología , Peso Corporal/fisiología , Ayuno/fisiología , Microbioma Gastrointestinal/fisiología , Síndrome Metabólico/fisiopatología , Anciano , Akkermansia/fisiología , Índice de Masa Corporal , Desulfovibrionaceae/fisiología , Dieta , Heces/microbiología , Femenino , Humanos , Hipertensión/complicaciones , Hipertensión/microbiología , Hipertensión/fisiopatología , Masculino , Síndrome Metabólico/complicaciones , Síndrome Metabólico/microbiología , Persona de Mediana Edad , Ruminococcus/fisiología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/fisiología
19.
Trials ; 21(1): 1032, 2020 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-33375942

RESUMEN

BACKGROUND: Arterial hypertension is a major risk factor for cardiovascular disease and leads to target organ damage including stroke, heart failure, and kidney disease. About 1.5 billion people worldwide have hypertension, and it is estimated that it causes about 8 million deaths each year. Although there are several drugs available to lower blood pressure (BP), a great proportion of treated patients does not reach recommended treatment targets. Typical antihypertensive drugs target the vessels, the kidneys, and the heart. However, our gut microbiota also influences cardiovascular health, and gut dysbiosis is associated with hypertension. In this study protocol, we investigate the potential BP-lowering effect of a probiotic in patients with grade 1 hypertension. METHODS: This study is an exploratory, randomized, double-blind, placebo-controlled, parallel-group study. One hundred ten patients with grade 1 hypertension (treated or untreated) will be randomized to either the probiotic Vivomixx® or placebo. The primary endpoint is the nocturnal systolic BP measured by ambulatory blood pressure monitoring after 8 weeks adjusted for the baseline value. The secondary endpoints are changes from baseline in nocturnal diastolic BP, antihypertensive medication, fecal microbiome composition, fecal and serum metabolome, immune cell phenotypes, glucose variability after three standardized breakfasts, and health-related quality of life (PROMIS-29). We also assess the safety profile of the intervention. DISCUSSION: We postulate that various administrated bacteria (Lactobacilli, Bifidobacteria, and Streptococcus thermophilus) convert dietary components into active metabolites that positively affect immune cell function. A reduction of pro-inflammatory immune cell function could promote a BP-lowering effect. TRIAL REGISTRATION: ClinicalTrials.gov NCT03906578 . Registered on 08 April 2019.


Asunto(s)
Hipertensión , Probióticos , Antihipertensivos/efectos adversos , Presión Sanguínea , Monitoreo Ambulatorio de la Presión Arterial , Método Doble Ciego , Humanos , Hipertensión/diagnóstico , Hipertensión/tratamiento farmacológico , Probióticos/efectos adversos , Calidad de Vida , Ensayos Clínicos Controlados Aleatorios como Asunto
20.
Eur J Clin Nutr ; 74(Suppl 1): 48-56, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32873957

RESUMEN

BACKGROUND/OBJECTIVES: Metabolism is controlled by macro- and micronutrients. Protein-rich diets should lead to latent acidosis at tissue level with further negative implications. Food supplements with alkaline salts are available and popular pretending to prevent these changes. SUBJECTS/METHODS: Within a randomised double-blind placebo-controlled trial we tested the hypotheses that (1) a 4-week protein-rich diet induces a latent tissue acidosis and (2) an alkaline supplement can compensate this. Acid-base balance and important metabolic parameters were determined before and after 4 weeks of supplementation by peripheral blood samples, indirect calorimetry and muscle microdialysis before and after a protein-rich test meal. RESULTS: Fourty volunteers were randomised 1:1 to either verum or placebo supplements. Protein-rich diet by itself did not significantly affect acid-base balance. Alkaline supplementation increased plasma bicarbonate concentration without changing pH. Postprandial increases in serum glucose and insulin tended to be lower for verum vs. placebo. Resting and postprandial energy metabolism, and carbohydrate and fat oxidation did not differ significantly before and after supplementation in both groups. In muscle, postprandial glucose uptake and aerobic glucose oxidation were significantly higher for verum. In addition, verum significantly increased serum magnesium concentrations. CONCLUSIONS: Four weeks of protein-rich diet did not significantly influence acid-base balance. However, alkaline supplementation improved systemic and tissue acid-base parameters and oxidative glucose metabolism.


Asunto(s)
Equilibrio Ácido-Base , Periodo Posprandial , Anciano , Glucemia , Proteínas en la Dieta , Suplementos Dietéticos , Metabolismo Energético , Glucosa , Humanos , Insulina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA