Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Ecol Lett ; 26(8): 1277-1292, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37314027

RESUMEN

What is addressed as growing season in terrestrial ecosystems is one of the main determinants of annual plant biomass production globally. However, there is no well-defined concept behind. Here, we show different facets of what might be termed growing season, each with a distinct meaning: (1) the time period during which a plant or a part of it actually grows and produces new tissue, irrespective of net carbon gain (growing season sensu stricto). (2) The period defined by developmental, that is, phenological markers (phenological season). (3) The period during which vegetation as a whole achieves its annual net primary production (NPP) or a net ecosystem production (NEP), expressed as net carbon gain (productive season) and (4) the period during which plants could potentially grow based on meteorological criteria (meteorological season). We hypothesize that the duration of such a 'window of opportunity' is a strong predictor for NPP at a global scale, especially for forests. These different definitions have implications for the understanding and modelling of plant growth and biomass production. The common view that variation in phenology is a proxy for variation in productivity is misleading, often resulting in unfounded statements on potential consequences of climatic warming such as carbon sequestration.


Asunto(s)
Ecosistema , Bosques , Estaciones del Año , Desarrollo de la Planta , Plantas , Carbono , Cambio Climático
2.
Glob Chang Biol ; 26(3): 1857-1872, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31799736

RESUMEN

In temperate alpine environments, the short growing season, low temperature and a slow nutrient cycle may restrict plant growth more than carbon (C) assimilation does. To test whether C is a limiting resource, we applied a shade gradient from ambient light to 44% (maximum shade) of incident photon flux density (PFD) in late successional, Carex curvula-dominated alpine grassland at 2,580 m elevation in the Swiss central Alps for 3 years (2014-2016). Total aboveground biomass did not significantly decrease under reduced PFD, with a confidence interval ranging from +4% to -15% biomass in maximum shade. Belowground biomass, of which more than 80% were fine roots, was significantly reduced by a mean of 17.9 ± 4.6% (±SE), corresponding to 228 g/m2 , in maximum shade in 2015 and 2016. This suggests reduced investments into water and nutrient acquisition according to the functional equilibrium concept. Specific leaf area (SLA) and maximum leaf length of the most abundant species increased with decreasing PFD. Foliar concentration of nonstructural carbohydrates (NSC) was reduced by 12.5 ± 4.3% under maximum shade (mean of eight tested species), while NSC concentration of belowground storage organs were unchanged in the four most abundant forbs. Furthermore, maximum shade lowered foliar δ13 C by 1.56 ± 0.35‰ and increased foliar nitrogen concentrations per unit dry mass by 18.8 ± 4.1% across six species in 2015. However, based on unit leaf area, N concentrations were lower in shade (effect of higher SLA). Thus, while we found typical morphological and physiological plant responses to lower light, shading did not considerably affect seasonal aboveground biomass production of this alpine plant community within a broad range of PFD. This suggests that C is not a growth-limiting resource, matching the unresponsiveness to in situ CO2 enrichment previously reported for this type of grassland.


Asunto(s)
Carbono , Luz Solar , Biomasa , Pradera , Fenómenos Fisiológicos de las Plantas
3.
Nat Commun ; 13(1): 7398, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36456572

RESUMEN

Alpine plants have evolved a tight seasonal cycle of growth and senescence to cope with a short growing season. The potential growing season length (GSL) is increasing because of climate warming, possibly prolonging plant growth above- and belowground. We tested whether growth dynamics in typical alpine grassland are altered when the natural GSL (2-3 months) is experimentally advanced and thus, prolonged by 2-4 months. Additional summer months did not extend the growing period, as canopy browning started 34-41 days after the start of the season, even when GSL was more than doubled. Less than 10% of roots were produced during the added months, suggesting that root growth was as conservative as leaf growth. Few species showed a weak second greening under prolonged GSL, but not the dominant sedge. A longer growing season under future climate may therefore not extend growth in this widespread alpine community, but will foster species that follow a less strict phenology.


Asunto(s)
Clima , Pradera , Estaciones del Año , Desarrollo de la Planta , Adaptación Psicológica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA