Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PLoS Genet ; 18(2): e1010011, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35134055

RESUMEN

Atlantic Halibut (Hippoglossus hippoglossus) has a X/Y genetic sex determination system, but the sex determining factor is not known. We produced a high-quality genome assembly from a male and identified parts of chromosome 13 as the Y chromosome due to sequence divergence between sexes and segregation of sex genotypes in pedigrees. Linkage analysis revealed that all chromosomes exhibit heterochiasmy, i.e. male-only and female-only meiotic recombination regions (MRR/FRR). We show that FRR/MRR intervals differ in nucleotide diversity and repeat class content and that this is true also for other Pleuronectidae species. We further show that remnants of a Gypsy-like transposable element insertion on chr13 promotes early male specific expression of gonadal somatic cell derived factor (gsdf). Less than 4.5 MYA, this male-determining element evolved on an autosomal FRR segment featuring pre-existing male meiotic recombination barriers, thereby creating a Y chromosome. Our findings indicate that heterochiasmy may facilitate the evolution of genetic sex determination systems relying on linkage of sexually antagonistic loci to a sex-determining factor.


Asunto(s)
Proteínas de Peces/genética , Lenguado/genética , Recombinación Genética , Procesos de Determinación del Sexo , Animales , Elementos Transponibles de ADN , Embrión no Mamífero , Femenino , Lenguado/embriología , Expresión Génica , Genoma , Masculino , Meiosis , Regiones Promotoras Genéticas , Secuencias Repetitivas de Ácidos Nucleicos , Cromosomas Sexuales , Cromosoma Y
2.
BMC Genomics ; 23(1): 635, 2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36071374

RESUMEN

BACKGROUND: Tandem mass tag spectrometry (TMT labeling-LC-MS/MS) was utilized to examine the global proteomes of Atlantic halibut eggs at the 1-cell-stage post fertilization. Comparisons were made between eggs judged to be of good quality (GQ) versus poor quality (BQ) as evidenced by their subsequent rates of survival for 12 days. Altered abundance of selected proteins in BQ eggs was confirmed by parallel reaction monitoring spectrometry (PRM-LC-MS/MS). Correspondence of protein levels to expression of related gene transcripts was examined via qPCR. Potential mitochondrial differences between GQ and BQ eggs were assessed by transmission electron microscopy (TEM) and measurements of mitochondrial DNA (mtDNA) levels. RESULTS: A total of 115 proteins were found to be differentially abundant between GQ and BQ eggs. Frequency distributions of these proteins indicated higher protein folding activity in GQ eggs compared to higher transcription and protein degradation activities in BQ eggs. BQ eggs were also significantly enriched with proteins related to mitochondrial structure and biogenesis. Quantitative differences in abundance of several proteins with parallel differences in their transcript levels were confirmed in egg samples obtained over three consecutive reproductive seasons. The observed disparities in global proteome profiles suggest impairment of protein and energy homeostasis related to unfolded protein response and mitochondrial stress in BQ eggs. TEM revealed BQ eggs to contain significantly higher numbers of mitochondria, but differences in corresponding genomic mtDNA (mt-nd5 and mt-atp6) levels were not significant. Mitochondria from BQ eggs were significantly smaller with a more irregular shape and a higher number of cristae than those from GQ eggs. CONCLUSION: The results of this study indicate that BQ Atlantic halibut eggs are impaired at both transcription and translation levels leading to endoplasmic reticulum and mitochondrial disorders. Observation of these irregularities over three consecutive reproductive seasons in BQ eggs from females of diverse background, age and reproductive experience indicates that they are a hallmark of poor egg quality. Additional research is needed to discover when in oogenesis and under what circumstances these defects may arise. The prevalence of this suite of markers in BQ eggs of diverse vertebrate species also begs investigation.


Asunto(s)
Lenguado , Animales , Cromatografía Liquida , ADN Mitocondrial/genética , Femenino , Lenguado/genética , Homeostasis , Pliegue de Proteína , Proteoma , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA