Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
EMBO J ; 40(12): e107471, 2021 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-34008862

RESUMEN

The key role of APP for Alzheimer pathogenesis is well established. However, perinatal lethality of germline knockout mice lacking the entire APP family has so far precluded the analysis of its physiological functions for the developing and adult brain. Here, we generated conditional APP/APLP1/APLP2 triple KO (cTKO) mice lacking the APP family in excitatory forebrain neurons from embryonic day 11.5 onwards. NexCre cTKO mice showed altered brain morphology with agenesis of the corpus callosum and disrupted hippocampal lamination. Further, NexCre cTKOs revealed reduced basal synaptic transmission and drastically reduced long-term potentiation that was associated with reduced dendritic length and reduced spine density of pyramidal cells. With regard to behavior, lack of the APP family leads not only to severe impairments in a panel of tests for learning and memory, but also to an autism-like phenotype including repetitive rearing and climbing, impaired social communication, and deficits in social interaction. Together, our study identifies essential functions of the APP family during development, for normal hippocampal function and circuits important for learning and social behavior.


Asunto(s)
Precursor de Proteína beta-Amiloide/genética , Trastorno Autístico/genética , Animales , Trastorno Autístico/fisiopatología , Conducta Animal , Región CA1 Hipocampal/fisiología , Femenino , Aprendizaje , Potenciación a Largo Plazo , Masculino , Ratones Noqueados , Neuronas/fisiología , Fenotipo , Prosencéfalo/citología , Conducta Social , Sinapsis/fisiología , Transmisión Sináptica
2.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34172567

RESUMEN

Alterations in Ca2+ homeostasis have been reported in several in vitro and in vivo studies using mice expressing the Alzheimer's disease-associated transgenes, presenilin and the amyloid precursor protein (APP). While intense research focused on amyloid-ß-mediated functions on neuronal Ca2+ handling, the physiological role of APP and its close homolog APLP2 is still not fully clarified. We now elucidate a mechanism to show how APP and its homolog APLP2 control neuronal Ca2+ handling and identify especially the ectodomain APPsα as an essential regulator of Ca2+ homeostasis. Importantly, we demonstrate that the loss of APP and APLP2, but not APLP2 alone, impairs Ca2+ handling, the refill of the endoplasmic reticulum Ca2+ stores, and synaptic plasticity due to altered function and expression of the SERCA-ATPase and expression of store-operated Ca2+ channel-associated proteins Stim1 and Stim2. Long-term AAV-mediated expression of APPsα, but not acute application of the recombinant protein, restored physiological Ca2+ homeostasis and synaptic plasticity in APP/APLP2 cDKO cultures. Overall, our analysis reveals an essential role of the APP family and especially of the ectodomain APPsα in Ca2+ homeostasis, thereby highlighting its therapeutic potential.


Asunto(s)
Precursor de Proteína beta-Amiloide/deficiencia , Calcio/metabolismo , Hipocampo/patología , Homeostasis , Neuronas/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Citosol/metabolismo , Retículo Endoplásmico/metabolismo , Potenciales Postsinápticos Excitadores , Integrasas/metabolismo , Potenciación a Largo Plazo , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Biológicos , Regulación hacia Arriba
3.
J Neurosci ; 42(29): 5782-5802, 2022 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-35667850

RESUMEN

Alzheimer's disease (AD) is histopathologically characterized by Aß plaques and the accumulation of hyperphosphorylated Tau species, the latter also constituting key hallmarks of primary tauopathies. Whereas Aß is produced by amyloidogenic APP processing, APP processing along the competing nonamyloidogenic pathway results in the secretion of neurotrophic and synaptotrophic APPsα. Recently, we demonstrated that APPsα has therapeutic effects in transgenic AD model mice and rescues Aß-dependent impairments. Here, we examined the potential of APPsα to mitigate Tau-induced synaptic deficits in P301S mice (both sexes), a widely used mouse model of tauopathy. Analysis of synaptic plasticity revealed an aberrantly increased LTP in P301S mice that could be normalized by acute application of nanomolar amounts of APPsα to hippocampal slices, indicating a homeostatic function of APPsα on a rapid time scale. Further, AAV-mediated in vivo expression of APPsα restored normal spine density of CA1 neurons even at stages of advanced Tau pathology not only in P301S mice, but also in independent THY-Tau22 mice. Strikingly, when searching for the mechanism underlying aberrantly increased LTP in P301S mice, we identified an early and progressive loss of major GABAergic interneuron subtypes in the hippocampus of P301S mice, which may lead to reduced GABAergic inhibition of principal cells. Interneuron loss was paralleled by deficits in nest building, an innate behavior highly sensitive to hippocampal impairments. Together, our findings indicate that APPsα has therapeutic potential for Tau-mediated synaptic dysfunction and suggest that loss of interneurons leads to disturbed neuronal circuits that compromise synaptic plasticity as well as behavior.SIGNIFICANCE STATEMENT Our findings indicate, for the first time, that APPsα has the potential to rescue Tau-induced spine loss and abnormal synaptic plasticity. Thus, APPsα might have therapeutic potential not only because of its synaptotrophic functions, but also its homeostatic capacity for neuronal network activity. Hence, APPsα is one of the few molecules which has proven therapeutic effects in mice, both for Aß- and Tau-dependent synaptic impairments and might therefore have therapeutic potential for patients suffering from AD or primary tauopathies. Furthermore, we found in P301S mice a pronounced reduction of inhibitory interneurons as the earliest pathologic event preceding the accumulation of hyperphosphorylated Tau species. This loss of interneurons most likely disturbs neuronal circuits that are important for synaptic plasticity and behavior.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Enfermedad de Alzheimer/metabolismo , Animales , Femenino , Hipocampo/metabolismo , Masculino , Ratones , Ratones Transgénicos , Plasticidad Neuronal/fisiología , Tauopatías/patología
4.
J Neurosci ; 41(24): 5157-5172, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-33926999

RESUMEN

The physiological role of the amyloid-precursor protein (APP) is insufficiently understood. Recent work has implicated APP in the regulation of synaptic plasticity. Substantial evidence exists for a role of APP and its secreted ectodomain APPsα in Hebbian plasticity. Here, we addressed the relevance of APP in homeostatic synaptic plasticity using organotypic tissue cultures prepared from APP-/- mice of both sexes. In the absence of APP, dentate granule cells failed to strengthen their excitatory synapses homeostatically. Homeostatic plasticity is rescued by amyloid-ß and not by APPsα, and it is neither observed in APP+/+ tissue treated with ß- or γ-secretase inhibitors nor in synaptopodin-deficient cultures lacking the Ca2+-dependent molecular machinery of the spine apparatus. Together, these results suggest a role of APP processing via the amyloidogenic pathway in homeostatic synaptic plasticity, representing a function of relevance for brain physiology as well as for brain states associated with increased amyloid-ß levels.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/fisiología , Plasticidad Neuronal/fisiología , Animales , Femenino , Homeostasis/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
5.
EMBO J ; 37(11)2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29661886

RESUMEN

Increasing evidence suggests that synaptic functions of the amyloid precursor protein (APP), which is key to Alzheimer pathogenesis, may be carried out by its secreted ectodomain (APPs). The specific roles of APPsα and APPsß fragments, generated by non-amyloidogenic or amyloidogenic APP processing, respectively, remain however unclear. Here, we expressed APPsα or APPsß in the adult brain of conditional double knockout mice (cDKO) lacking APP and the related APLP2. APPsα efficiently rescued deficits in spine density, synaptic plasticity (LTP and PPF), and spatial reference memory of cDKO mice. In contrast, APPsß failed to show any detectable effects on synaptic plasticity and spine density. The C-terminal 16 amino acids of APPsα (lacking in APPsß) proved sufficient to facilitate LTP in a mechanism that depends on functional nicotinic α7-nAChRs. Further, APPsα showed high-affinity, allosteric potentiation of heterologously expressed α7-nAChRs in oocytes. Collectively, we identified α7-nAChRs as a crucial physiological receptor specific for APPsα and show distinct in vivo roles for APPsα versus APPsß. This implies that reduced levels of APPsα that might occur during Alzheimer pathogenesis cannot be compensated by APPsß.


Asunto(s)
Enfermedad de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Cognición/fisiología , Plasticidad Neuronal/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Ratones , Ratones Noqueados , Neuronas/metabolismo , Neuronas/patología , Columna Vertebral/metabolismo , Columna Vertebral/patología , Transmisión Sináptica/genética , Receptor Nicotínico de Acetilcolina alfa 7/genética
6.
Nat Rev Neurosci ; 18(5): 281-298, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28360418

RESUMEN

Amyloid precursor protein (APP) gives rise to the amyloid-ß peptide and thus has a key role in the pathogenesis of Alzheimer disease. By contrast, the physiological functions of APP and the closely related APP-like proteins (APLPs) remain less well understood. Studying these physiological functions has been challenging and has required a careful long-term strategy, including the analysis of different App-knockout and Aplp-knockout mice. In this Review, we summarize these findings, focusing on the in vivo roles of APP family members and their processing products for CNS development, synapse formation and function, brain injury and neuroprotection, as well as ageing. In addition, we discuss the implications of APP physiology for therapeutic approaches.


Asunto(s)
Precursor de Proteína beta-Amiloide/fisiología , Encéfalo/metabolismo , Animales , Humanos , Ratones
7.
Nature ; 536(7615): 215-8, 2016 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-27487218

RESUMEN

Metastasis is the leading cause of cancer-related death in humans. It is a complex multistep process during which individual tumour cells spread primarily through the circulatory system to colonize distant organs. Once in the circulation, tumour cells remain vulnerable, and their metastatic potential largely depends on a rapid and efficient way to escape from the blood stream by passing the endothelial barrier. Evidence has been provided that tumour cell extravasation resembles leukocyte transendothelial migration. However, it remains unclear how tumour cells interact with endothelial cells during extravasation and how these processes are regulated on a molecular level. Here we show that human and murine tumour cells induce programmed necrosis (necroptosis) of endothelial cells, which promotes tumour cell extravasation and metastasis. Treatment of mice with the receptor-interacting serine/threonine-protein kinase 1 (RIPK1)-inhibitor necrostatin-1 or endothelial-cell-specific deletion of RIPK3 reduced tumour-cell-induced endothelial necroptosis, tumour cell extravasation and metastasis. In contrast, pharmacological caspase inhibition or endothelial-cell-specific loss of caspase-8 promoted these processes. We furthermore show in vitro and in vivo that tumour-cell-induced endothelial necroptosis leading to extravasation and metastasis requires amyloid precursor protein expressed by tumour cells and its receptor, death receptor 6 (DR6), on endothelial cells as the primary mediators of these effects. Our data identify a new mechanism underlying tumour cell extravasation and metastasis, and suggest endothelial DR6-mediated necroptotic signalling pathways as targets for anti-metastatic therapies.


Asunto(s)
Apoptosis , Células Endoteliales/metabolismo , Células Endoteliales/patología , Necrosis , Metástasis de la Neoplasia , Neoplasias/patología , Receptores del Factor de Necrosis Tumoral/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Apoptosis/efectos de los fármacos , Caspasa 8/genética , Inhibidores de Caspasas/farmacología , Línea Celular , Modelos Animales de Enfermedad , Femenino , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Imidazoles/farmacología , Indoles/farmacología , Masculino , Ratones , Necrosis/tratamiento farmacológico , Metástasis de la Neoplasia/tratamiento farmacológico , Neoplasias/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/antagonistas & inhibidores , Proteína Serina-Treonina Quinasas de Interacción con Receptores/deficiencia , Migración Transendotelial y Transepitelial/efectos de los fármacos
8.
Biochem Biophys Res Commun ; 570: 137-142, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34280617

RESUMEN

γ-Secretase is a protease catalysing the proteolysis of type-I membrane proteins usually after precedent ectodomain shedding of the respective protein substrates. Since proteolysis of membrane proteins is involved in fundamental cellular signaling pathways, dysfunction of γ-secretase can have significant impact on cellular metabolism and differentiation. Here, we examined the role of γ-secretase in cellular lipid metabolism using neuronally differentiated human SH-SY5Y cells. The pharmacological inhibition of γ-secretase induced lipid droplet (LD) accumulation. The LD accumulation was significantly attenuated by preventing the accumulation of C-terminal fragment of the amyloid precursor protein (APP-CTF), which is a direct substrate of γ-secretase. Additionally, LD accumulation upon γ-secretase inhibition was not induced in APP-knock out (APP-KO) mouse embryonic fibroblasts (MEFs), suggesting significant involvement of APP-CTF accumulation in LD accumulation upon γ-secretase inhibition. On the other hand, γ-secretase inhibition-dependent cholesterol accumulation was not attenuated by inhibition of APP-CTF accumulation in the differentiated SH-SY5Y cells nor in APP-KO MEFs. These results suggest that γ-secretase inhibition can induce accumulation of LD and cholesterol differentially via APP-CTF accumulation.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Precursor de Proteína beta-Amiloide/química , Precursor de Proteína beta-Amiloide/metabolismo , Gotas Lipídicas/metabolismo , Fragmentos de Péptidos/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Diferenciación Celular , Línea Celular Tumoral , Colesterol/metabolismo , Ratones
9.
Cereb Cortex ; 30(7): 4044-4063, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32219307

RESUMEN

Amyloid-ß precursor protein (APP) is central to the pathogenesis of Alzheimer's disease, yet its physiological functions remain incompletely understood. Previous studies had indicated important synaptic functions of APP and the closely related homologue APLP2 in excitatory forebrain neurons for spine density, synaptic plasticity, and behavior. Here, we show that APP is also widely expressed in several interneuron subtypes, both in hippocampus and cortex. To address the functional role of APP in inhibitory neurons, we generated mice with a conditional APP/APLP2 double knockout (cDKO) in GABAergic forebrain neurons using DlxCre mice. These DlxCre cDKO mice exhibit cognitive deficits in hippocampus-dependent spatial learning and memory tasks, as well as impairments in species-typic nesting and burrowing behaviors. Deficits at the behavioral level were associated with altered neuronal morphology and synaptic plasticity Long-Term Potentiation (LTP). Impaired basal synaptic transmission at the Schafer collateral/CA1 pathway, which was associated with altered compound excitatory/inhibitory synaptic currents and reduced action potential firing of CA1 pyramidal cells, points to a disrupted excitation/inhibition balance in DlxCre cDKOs. Together, these impairments may lead to hippocampal dysfunction. Collectively, our data reveal a crucial role of APP family proteins in inhibitory interneurons to maintain functional network activity.


Asunto(s)
Precursor de Proteína beta-Amiloide/genética , Cognición/fisiología , Neuronas GABAérgicas/metabolismo , Hipocampo/metabolismo , Plasticidad Neuronal/genética , Células Piramidales/metabolismo , Potenciales de Acción , Animales , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/fisiopatología , Potenciales Postsinápticos Excitadores , Hipocampo/fisiopatología , Potenciales Postsinápticos Inhibidores , Potenciación a Largo Plazo/genética , Ratones , Ratones Noqueados , Comportamiento de Nidificación/fisiología , Prosencéfalo , Aprendizaje Espacial/fisiología , Memoria Espacial/fisiología
10.
EMBO J ; 35(20): 2213-2222, 2016 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-27572463

RESUMEN

Dynamic synapses facilitate activity-dependent remodeling of neural circuits, thereby providing the structural substrate for adaptive behaviors. However, the mechanisms governing dynamic synapses in adult brain are still largely unknown. Here, we demonstrate that in the cortex of adult amyloid precursor protein knockout (APP-KO) mice, spine formation and elimination were both reduced while overall spine density remained unaltered. When housed under environmental enrichment, APP-KO mice failed to respond with an increase in spine density. Spine morphology was also altered in the absence of APP The underlying mechanism of these spine abnormalities in APP-KO mice was ascribed to an impairment in D-serine homeostasis. Extracellular D-serine concentration was significantly reduced in APP-KO mice, coupled with an increase of total D-serine. Strikingly, chronic treatment with exogenous D-serine normalized D-serine homeostasis and restored the deficits of spine dynamics, adaptive plasticity, and morphology in APP-KO mice. The cognitive deficit observed in APP-KO mice was also rescued by D-serine treatment. These data suggest that APP regulates homeostasis of D-serine, thereby maintaining the constitutive and adaptive plasticity of dendritic spines in adult brain.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Espinas Dendríticas/metabolismo , Plasticidad Neuronal , Serina/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Trastornos del Conocimiento/metabolismo , Femenino , Homeostasis , Ratones Noqueados
11.
Mol Cell Proteomics ; 17(8): 1487-1501, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29716987

RESUMEN

The cell surface proteome is dynamic and has fundamental roles in cell signaling. Many surface membrane proteins are proteolytically released into a cell's secretome, where they can have additional functions in cell-cell-communication. Yet, it remains challenging to determine the surface proteome and to compare it to the cell secretome, under serum-containing cell culture conditions. Here, we set up and evaluated the 'surface-spanning protein enrichment with click sugars' (SUSPECS) method for cell surface membrane glycoprotein biotinylation, enrichment and label-free quantitative mass spectrometry. SUSPECS is based on click chemistry-mediated labeling of glycoproteins, is compatible with labeling of living cells and can be combined with secretome analyses in the same experiment. Immunofluorescence-based confocal microscopy demonstrated that SUSPECS selectively labeled cell surface proteins. Nearly 700 transmembrane glycoproteins were consistently identified at the surface of primary neurons. To demonstrate the utility of SUSPECS, we applied it to the protease BACE1, which is a key drug target in Alzheimer's disease. Pharmacological BACE1-inhibition selectively remodeled the neuronal surface glycoproteome, resulting in up to 7-fold increased abundance of the BACE1 substrates APP, APLP1, SEZ6, SEZ6L, CNTN2, and CHL1, whereas other substrates were not or only mildly affected. Interestingly, protein changes at the cell surface only partly correlated with changes in the secretome. Several altered proteins were validated by immunoblots in neurons and mouse brains. Apparent nonsubstrates, such as TSPAN6, were also increased, indicating that BACE1-inhibition may lead to unexpected secondary effects. In summary, SUSPECS is broadly useful for determination of the surface glycoproteome and its correlation with the secretome.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Membrana Celular/metabolismo , Química Clic/métodos , Glicoproteínas/metabolismo , Neuronas/metabolismo , Proteoma/metabolismo , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Animales , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Biotinilación , Células COS , Células Cultivadas , Chlorocebus aethiops , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Reproducibilidad de los Resultados , Especificidad por Sustrato
12.
Glia ; 67(5): 985-998, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30667091

RESUMEN

The investigation of amyloid precursor protein (APP) has been mainly confined to its neuronal functions, whereas very little is known about its physiological role in astrocytes. Astrocytes exhibit a particular morphology with slender extensions protruding from somata and primary branches. Along these fine extensions, spontaneous calcium transients occur in spatially restricted microdomains. Within these microdomains mitochondria are responsible for local energy supply and Ca2+ buffering. Using two-photon in vivo Ca2+ imaging, we report a significant decrease in the density of active microdomains, frequency of spontaneous Ca2+ transients and slower Ca2+ kinetics in mice lacking APP. Mechanistically, these changes could be potentially linked to mitochondrial malfunction as our in vivo and in vitro data revealed severe, APP-dependent structural mitochondrial fragmentation in astrocytes. Functionally, such mitochondria exhibited prolonged kinetics and morphology dependent signal size of ATP-induced Ca2+ transients. Our results highlight a prominent role of APP in the modulation of Ca2+ activity in astrocytic microdomains whose precise functioning is crucial for the reinforcement and modulation of synaptic function. This study provides novel insights in APP physiological functions which are important for the understanding of the effects of drugs validated in Alzheimer's disease treatment that affect the function of APP.


Asunto(s)
Precursor de Proteína beta-Amiloide/deficiencia , Astrocitos/ultraestructura , Encéfalo/citología , Calcio/metabolismo , Microdominios de Membrana/metabolismo , Mitocondrias/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Animales Recién Nacidos , Encéfalo/metabolismo , Células Cultivadas , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/ultraestructura , Transducción Genética , Transfección
13.
J Neurosci ; 37(21): 5345-5365, 2017 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-28450540

RESUMEN

The amyloid precursor protein (APP), a key player in Alzheimer's disease, belongs to the family of synaptic adhesion molecules (SAMs) due to its impact on synapse formation and synaptic plasticity. These functions are mediated by both the secreted APP ectodomain that acts as a neurotrophic factor and full-length APP forming trans-cellular dimers. Two homologs of APP exist in mammals: the APP like proteins APLP1 and APLP2, exhibiting functions that partly overlap with those of APP. Here we tested whether APLP1 and APLP2 also show features of SAMs. We found that all three family members were upregulated during postnatal development coinciding with synaptogenesis. We observed presynaptic and postsynaptic localization of all APP family members and could show that heterologous expression of APLP1 or APLP2 in non-neuronal cells induces presynaptic differentiation in contacting axons of cocultured neurons, similar to APP and other SAMs. Moreover, APP/APLPs all bind to synaptic-signaling molecules, such as MINT/X11. Furthermore, we report that aged APLP1 knock-out mice show impaired basal transmission and a reduced mEPSC frequency, likely resulting from reduced spine density. This demonstrates an essential nonredundant function of APLP1 at the synapse. Compared to APP, APLP1 exhibits increased trans-cellular binding and elevated cell-surface levels due to reduced endocytosis. In conclusion, our results establish that APLPs show typical features of SAMs and indicate that increased surface expression, as observed for APLP1, is essential for proper synapse formation in vitro and synapse maintenance in vivoSIGNIFICANCE STATEMENT According to the amyloid-cascade hypothesis, Alzheimer's disease is caused by the accumulation of Aß peptides derived from sequential cleavage of the amyloid precursor protein (APP) by ß-site APP cleaving enzyme 1 (BACE1) and γ-secretase. Here we show that all mammalian APP family members (APP, APLP1, and APLP2) exhibit synaptogenic activity, involving trans-synaptic dimerization, similar to other synaptic cell adhesion molecules, such as Neuroligin/Neurexin. Importantly, our study revealed that the loss of APLP1, which is one of the major substrates of BACE1, causes reduced spine density in aged mice. Because some therapeutic interventions target APP processing (e.g., BACE inhibitors), those strategies may alter APP/APLP physiological function. This should be taken into account for the development of pharmaceutical treatments of Alzheimer's disease.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Espinas Dendríticas/metabolismo , Potenciales Postsinápticos Excitadores , Sinapsis/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Células COS , Células Cultivadas , Chlorocebus aethiops , Proteínas de Unión al ADN , Espinas Dendríticas/patología , Espinas Dendríticas/fisiología , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas Nucleares/metabolismo , Unión Proteica , Transporte de Proteínas , Proteínas de Unión al ARN , Sinapsis/fisiología
14.
J Neurosci ; 36(32): 8356-71, 2016 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-27511009

RESUMEN

UNLABELLED: Acute cerebral ischemia and chronic neurovascular diseases share various common mechanisms with neurodegenerative diseases, such as disturbed cellular calcium and energy homeostasis and accumulation of toxic metabolites. A link between these conditions may be constituted by amyloid precursor protein (APP), which plays a pivotal role in the pathogenesis of Alzheimer's disease, but has also been associated with the response to acute hypoxia and regulation of calcium homeostasis. We therefore studied hypoxia-induced loss of function and recovery upon reoxygenation in hippocampal slices of mice lacking APP (APP(-/-)) or selectively expressing its soluble extracellular domain (APPsα-KI). Transient hypoxia disrupted electrical activity at the network and cellular level. In mice lacking APP, these impairments were significantly more severe, showing increased rise of intracellular calcium, faster loss of function, and higher incidence of spreading depression. Likewise, functional recovery upon reoxygenation was much slower and less complete than in controls. Most of these deficits were rescued by selective expression of the soluble extracellular fragment APPsα, or by pharmacological block of L-type calcium channels. We conclude that APP supports neuronal resistance toward acute hypoxia. This effect is mediated by the secreted APPsα-domain and involves L-type calcium channels. SIGNIFICANCE STATEMENT: Amyloid precursor protein (APP) is involved in the pathophysiology of Alzheimer's disease, but its normal function in the brain remains elusive. Here, we describe a neuroprotective role of the protein in acute hypoxia. Functional recovery of mouse hippocampal networks after transient reduction of oxygen supply was strongly impaired in animals lacking APP. Most protective effects are mediated by the soluble extracellular fragment APPsα and involve L-type calcium channels. Thus, APP contributes to calcium homeostasis in situations of metabolic stress. This finding may shed light on the physiological function of APP and may be important for understanding mechanisms of neurodegenerative diseases.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Canales de Calcio Tipo L/metabolismo , Hipoxia/patología , Red Nerviosa/fisiología , Neuronas/metabolismo , Ácido 3-piridinacarboxílico, 1,4-dihidro-2,6-dimetil-5-nitro-4-(2-(trifluorometil)fenil)-, Éster Metílico/farmacología , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Agonistas de los Canales de Calcio/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Potenciales Evocados/fisiología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Hipocampo/metabolismo , Hipocampo/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Red Nerviosa/efectos de los fármacos , Nifedipino/farmacología
15.
J Neurosci ; 35(49): 16018-33, 2015 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-26658856

RESUMEN

The amyloid precursor protein family (APP/APLPs) has essential roles for neuromuscular synapse development and for the formation and plasticity of synapses within the CNS. Despite this, it has remained unclear whether APP mediates its functions primarily as a cell surface adhesion and signaling molecule or via its numerous proteolytic cleavage products. To address these questions, we followed a genetic approach and used APPΔCT15 knockin mice lacking the last 15 amino acids of APP, including the highly conserved YENPTY protein interaction motif. To circumvent functional compensation by the closely related APLP2, these mice were bred to an APLP2-KO background to generate APPΔCT15-DM double mutants. These APPΔCT15-DM mice were partially viable and displayed defects in neuromuscular synapse morphology and function with impairments in the ability to sustain transmitter release that resulted in muscular weakness. In the CNS, we demonstrate pronounced synaptic deficits including impairments in LTP that were associated with deficits in spatial learning and memory. Thus, the APP-CT15 domain provides essential physiological functions, likely via recruitment of specific interactors. Together with the well-established role of APPsα for synaptic plasticity, this shows that multiple domains of APP, including the conserved C-terminus, mediate signals required for normal PNS and CNS physiology. In addition, we demonstrate that lack of the APP-CT15 domain strongly impairs Aß generation in vivo, establishing the APP C-terminus as a target for Aß-lowering strategies. SIGNIFICANCE STATEMENT: Synaptic dysfunction and cognitive decline are early hallmark features of Alzheimer's disease. Thus, it is essential to elucidate the in vivo function(s) of APP at the synapse. At present, it is unknown whether APP family proteins function as cell surface receptors, or mainly via shedding of their secreted ectodomains, such as neurotrophic APPsα. Here, to dissect APP functional domains, we used APP mutant mice lacking the last 15 amino acids that were crossed onto an APLP2-KO background. These APPΔCT15-DM mice showed defects in neuromuscular morphology and function. Synaptic deficits in the CNS included impairments of synaptic plasticity, spatial learning, and memory. Collectively, this indicates that multiple APP domains, including the C-terminus, are required for normal nervous system function.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Hipocampo/patología , Mutación/genética , Plasticidad Neuronal/fisiología , Sinapsis/patología , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Modelos Animales de Enfermedad , Potenciales Postsinápticos Excitadores/genética , Potenciales Postsinápticos Excitadores/fisiología , Conducta Exploratoria/fisiología , Fenómenos de Retorno al Lugar Habitual/fisiología , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fuerza Muscular/fisiología , Conducción Nerviosa/genética , Conducción Nerviosa/fisiología , Plasticidad Neuronal/genética , Nervio Frénico/fisiopatología , Estructura Terciaria de Proteína/genética
16.
Acta Neuropathol ; 131(2): 247-266, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26538149

RESUMEN

Alzheimer's disease (AD) is characterized by synaptic failure, dendritic and axonal atrophy, neuronal death and progressive loss of cognitive functions. It is commonly assumed that these deficits arise due to ß-amyloid accumulation and plaque deposition. However, increasing evidence indicates that loss of physiological APP functions mediated predominantly by neurotrophic APPsα produced in the non-amyloidogenic α-secretase pathway may contribute to AD pathogenesis. Upregulation of APPsα production via induction of α-secretase might, however, be problematic as this may also affect substrates implicated in tumorigenesis. Here, we used a gene therapy approach to directly overexpress APPsα in the brain using AAV-mediated gene transfer and explored its potential to rescue structural, electrophysiological and behavioral deficits in APP/PS1∆E9 AD model mice. Sustained APPsα overexpression in aged mice with already preexisting pathology and amyloidosis restored synaptic plasticity and partially rescued spine density deficits. Importantly, AAV-APPsα treatment also resulted in a functional rescue of spatial reference memory in the Morris water maze. Moreover, we demonstrate a significant reduction of soluble Aß species and plaque load. In addition, APPsα induced the recruitment of microglia with a ramified morphology into the vicinity of plaques and upregulated IDE and TREM2 expression suggesting enhanced plaque clearance. Collectively, these data indicate that APPsα can mitigate synaptic and cognitive deficits, despite established pathology. Increasing APPsα may therefore be of therapeutic relevance for AD.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/terapia , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Encéfalo/fisiopatología , Terapia Genética , Sinapsis/fisiología , Enfermedad de Alzheimer/patología , Secretasas de la Proteína Precursora del Amiloide/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Encéfalo/patología , Dependovirus/genética , Modelos Animales de Enfermedad , Terapia Genética/métodos , Vectores Genéticos/administración & dosificación , Hipocampo/patología , Hipocampo/fisiopatología , Humanos , Masculino , Aprendizaje por Laberinto/fisiología , Ratones Transgénicos , Microglía/patología , Microglía/fisiología , Neuronas/patología , Neuronas/fisiología , Placa Amiloide/patología , Placa Amiloide/fisiopatología , Presenilina-1/genética , Presenilina-1/metabolismo , Técnicas de Cultivo de Tejidos
17.
EMBO J ; 30(11): 2266-80, 2011 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-21522131

RESUMEN

Despite its key role in Alzheimer pathogenesis, the physiological function(s) of the amyloid precursor protein (APP) and its proteolytic fragments are still poorly understood. Previously, we generated APPsα knock-in (KI) mice expressing solely the secreted ectodomain APPsα. Here, we generated double mutants (APPsα-DM) by crossing APPsα-KI mice onto an APLP2-deficient background and show that APPsα rescues the postnatal lethality of the majority of APP/APLP2 double knockout mice. Surviving APPsα-DM mice exhibited impaired neuromuscular transmission, with reductions in quantal content, readily releasable pool, and ability to sustain vesicle release that resulted in muscular weakness. We show that these defects may be due to loss of an APP/Mint2/Munc18 complex. Moreover, APPsα-DM muscle showed fragmented post-synaptic specializations, suggesting impaired postnatal synaptic maturation and/or maintenance. Despite normal CNS morphology and unaltered basal synaptic transmission, young APPsα-DM mice already showed pronounced hippocampal dysfunction, impaired spatial learning and a deficit in LTP that could be rescued by GABA(A) receptor inhibition. Collectively, our data show that APLP2 and APP are synergistically required to mediate neuromuscular transmission, spatial learning and synaptic plasticity.


Asunto(s)
Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/deficiencia , Animales , Cruzamientos Genéticos , Aprendizaje , Ratones , Ratones Noqueados , Unión Neuromuscular/fisiología , Plasticidad Neuronal , Transmisión Sináptica
18.
Blood ; 122(12): 2030-8, 2013 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-23884859

RESUMEN

Different types of endothelial cells (EC) fulfill distinct tasks depending on their microenvironment. ECs are therefore difficult to genetically manipulate ex vivo for functional studies or gene therapy. We assessed lentiviral vectors (LVs) targeted to the EC surface marker CD105 for in vivo gene delivery. The mouse CD105-specific vector, mCD105-LV, transduced only CD105-positive cells in primary liver cell cultures. Upon systemic injection, strong reporter gene expression was detected in liver where mCD105-LV specifically transduced liver sinusoidal ECs (LSECs) but not Kupffer cells, which were mainly transduced by nontargeted LVs. Tumor ECs were specifically targeted upon intratumoral vector injection. Delivery of the erythropoietin gene with mCD105-LV resulted in substantially increased erythropoietin and hematocrit levels. The human CD105-specific vector (huCD105-LV) transduced exclusively human LSECs in mice transplanted with human liver ECs. Interestingly, when applied at higher dose and in absence of target cells in the liver, huCD105-LV transduced ECs of a human artery transplanted into the descending mouse aorta. The data demonstrate for the first time targeted gene delivery to specialized ECs upon systemic vector administration. This strategy offers novel options to better understand the physiological functions of ECs and to treat genetic diseases such as those affecting blood factors.


Asunto(s)
Arterias , Células Endoteliales/metabolismo , Técnicas de Transferencia de Gen , Vectores Genéticos/genética , Hígado , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Línea Celular , Endoglina , Eritropoyetina/genética , Eritropoyetina/metabolismo , Expresión Génica , Genes Reporteros , Vectores Genéticos/administración & dosificación , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Macrófagos del Hígado/metabolismo , Lentivirus/genética , Ratones , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Transducción Genética
19.
Acta Neuropathol ; 129(1): 21-37, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25432317

RESUMEN

The key role of APP in the pathogenesis of Alzheimer disease is well established. However, postnatal lethality of double knockout mice has so far precluded the analysis of the physiological functions of APP and the APLPs in the brain. Previously, APP family proteins have been implicated in synaptic adhesion, and analysis of the neuromuscular junction of constitutive APP/APLP2 mutant mice showed deficits in synaptic morphology and neuromuscular transmission. Here, we generated animals with a conditional APP/APLP2 double knockout (cDKO) in excitatory forebrain neurons using NexCre mice. Electrophysiological recordings of adult NexCre cDKOs indicated a strong synaptic phenotype with pronounced deficits in the induction and maintenance of hippocampal LTP and impairments in paired pulse facilitation, indicating a possible presynaptic deficit. These deficits were also reflected in impairments in nesting behavior and hippocampus-dependent learning and memory tasks, including deficits in Morris water maze and radial maze performance. Moreover, while no gross alterations of brain morphology were detectable in NexCre cDKO mice, quantitative analysis of adult hippocampal CA1 neurons revealed prominent reductions in total neurite length, dendritic branching, reduced spine density and reduced spine head volume. Strikingly, the impairment of LTP could be selectively rescued by acute application of exogenous recombinant APPsα, but not APPsß, indicating a crucial role for APPsα to support synaptic plasticity of mature hippocampal synapses on a rapid time scale. Collectively, our analysis reveals an essential role of APP family proteins in excitatory principal neurons for mediating normal dendritic architecture, spine density and morphology, synaptic plasticity and cognition.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Hipocampo/fisiopatología , Plasticidad Neuronal/fisiología , Fragmentos de Péptidos/metabolismo , Sinapsis/fisiología , Precursor de Proteína beta-Amiloide/genética , Animales , Dendritas/patología , Dendritas/fisiología , Femenino , Hipocampo/patología , Masculino , Aprendizaje por Laberinto/fisiología , Ratones Noqueados , Actividad Motora/fisiología , Neuritas/patología , Neuritas/fisiología , Fragmentos de Péptidos/genética , Proteínas Recombinantes/metabolismo , Memoria Espacial/fisiología , Sinapsis/patología
20.
Mol Cell Neurosci ; 61: 201-10, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24998676

RESUMEN

The analysis of mouse models indicated that APP and the related APLPs are important for synapse formation and function. The synaptic role of APP is, however, complex due to partially overlapping functions within the gene family. APP/APLPs are proteolytically cleaved and have both adhesive and signaling properties. Mice lacking individual APP family members are viable, whereas APP/APLP2 and APLP1/APLP2 double knockout (DKO) mice die shortly after birth. Here, we analyzed the morphology of the neuromuscular junction (NMJ) of lethal APLP1/APLP2-DKO mice in comparison to lethal APP/APLP2-DKO mutants and viable single KO mice. We report that, surprisingly, the NMJ phenotype of APLP1/APLP2-DKO mice shows striking differences as compared to APP/APLP2-DKO mice. Unexpectedly, APLP1/APLP2-DKO mice exhibit normal endplate patterning and lack presynaptic nerve terminal sprouting. However, at the level of individual synapses we show that APLP1/APLP2-DKO mice exhibit reduced size of pre- and postsynaptic compartments and reduced colocalization. As APP/APLP2-DKO and APLP1/APLP2-DKO mice show similar penetrance of early postnatal lethality, this suggests that deficits at the level of individual synapses due to impaired synaptic apposition and/or deficits in transmitter release may cause lethality. Using an in vitro cell-adhesion assay, we observed that APP trans-dimerization is considerably less efficient than APLP2 trans-interaction. Thus, differences between APP/APLP2 and APP/APLP1 NMJ formation may be in part explained by differences in APP/APLP2 trans-dimerization properties. Collectively, our study further highlights the distinct and essential role of APLP2 at NMJ synapses that cannot be compensated by APP.


Asunto(s)
Precursor de Proteína beta-Amiloide/deficiencia , Regulación de la Expresión Génica/genética , Unión Neuromuscular/citología , Unión Neuromuscular/fisiología , Precursor de Proteína beta-Amiloide/genética , Análisis de Varianza , Animales , Peso Corporal/genética , Distribución de Chi-Cuadrado , Diafragma/citología , Diafragma/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Modelos Biológicos , Fragmentos de Péptidos , Receptores Colinérgicos/metabolismo , Médula Espinal/citología , Médula Espinal/metabolismo , Sinapsinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA