Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Fluoresc ; 27(6): 2111-2117, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28785903

RESUMEN

A novel fluorescein-based dual probe was designed and synthesized. The probe exhibited highly sensitive and selective colormetric response to Fe3+ and turn-on fluorescence response towards OCl- with very low detection limits of 100 and 50 nM, respectively. It was successfully applied for quantitative detection of Fe3+ and OCl- in real water samples. Moreover, probe 1 was expected to be a potentially powerful tool for studying and providing further insights into OCl- and Fe3+ chemistry in the near future.

2.
ACS Appl Mater Interfaces ; 16(6): 7768-7779, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38294427

RESUMEN

Hydrogels are increasingly used in flexible electronic devices, but the mechanical and electrochemical stabilities of hydrogel devices are often limited under specific harsh conditions. Herein, chemically/physically cross-linked double-network (DN) hydrogels containing binary cations Zn2+ and Li+ are constructed in order to address the above challenges. Double networks of chemically cross-linked polyacrylamide (PAM) and physically cross-linked κ-Carrageenan (κ-CG) are designed to account for the mechanical robustness while binary cations endow the hydrogels with excellent ionic conductivity and outstanding environmental adaptability. Excellent mechanical robustness and ionic conductivity (25 °C, 2.26 S·m-1; -25 °C, 1.54 S·m-1) have been achieved. Utilizing the DN hydrogels containing binary cations as signal-converting materials, we fabricated flexible mechanosensors. High gauge factors (resistive strain sensors, 2.4; capacitive pressure sensors, 0.82 kPa-1) and highly stable sensing ability have been achieved. Interestingly, zinc-ion hybrid supercapacitors containing the DN hydrogels containing binary cations as electrolytes have achieved an initial capacity of 52.5 mAh·g-1 at a current density of 3 A·g-1 and a capacity retention rate of 82.9% after 19,000 cycles. Proper working of the zinc-ion hybrid supercapacitors at subzero conditions and stable charge-discharge for more than 19,000 cycles at -25 °C have been demonstrated. Overall, DN hydrogels containing binary cations have provided promising materials for high-performance flexible electronic devices under harsh conditions.

3.
J Colloid Interface Sci ; 662: 976-985, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38382380

RESUMEN

Thermosensitive hydrogels have found extensive applications in soft devices, but they often suffer from limited functionalities, low response rate and small response amplitude. In this work, double layered asymmetrical hydrogels composed of a thermosensitive layer and a non-thermosensitive layer are developed to simultaneously achieve high-performance mechanosensing and actuating properties in a single hydrogel. In thermosensitive layer, thermosensitive microgels are introduced to construct hierarchical structure, which accounts for the enhanced thermosensitive behaviors by cooperative responsiveness. In non-thermosensitive layer, poly(acrylamide-co-acrylic acid) (P(AM-co-AA)) hydrogel is constructed. KCl is introduced as conductive component. Mechanosensors for monitoring various mechanical stimuli in daily life have been fabricated utilizing such hydrogels and high gauge factors (GF) have been achieved, 0.38 for resistive strain sensors, 9.40 kPa-1 for piezoresistive pressure sensors and 3.92 kPa-1 for capacitive pressure sensors. Because of the asymmetrical structure, such hydrogels also exhibit outstanding actuating properties with a fast response rate of 863°/min and a bending amplitude about 360°. Interestingly, grasping-releasing of target objects utilizing an octopus-shaped hydrogel actuator and temperature alerting based on hydrogel actuator are also demonstrated. Overall, the double layered asymmetrical ionic hydrogels have provided a new clue to construct hydrogel devices with multiple functionalities and enhanced response properties.

4.
J Biomater Appl ; 37(9): 1529-1541, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36693765

RESUMEN

Glaucoma is the leading cause of irreversible blindness, and its treatment is attracting widespread attention. Drug-loaded lacrimal suppositories can effectively treat xerophthalmia, but there is little research on the treatment of glaucoma with drug-loaded lacrimal suppositories. This article explored and expanded the non-pharmacological model of lacrimal suppository therapy for glaucoma by using a combination of lacrimal suppository and medication. The drug-loaded lacrimal suppository was rationally designed through the conjugation of gelatin with polyamide (PAM) via the formation of amide linkages, followed by Schiff base reaction grafting with latanoprost. In vitro drug release studies showed that latanoprost released from drug-loaded lacrimal embolus had sustained-release properties with a release time of 33 days and a drug release volume of 82.6%. The biological evaluation of drug-loaded lacrimal thrombus was carried out by IOP test, retinal potential test, and retinal H&E staining. The results showed that the IOP decreased to 27.125 ± 1.1254 mmHg, and the a and b waves of retinal potential increased to 4.39 ± 0.16 µV and 67.9 ± 2.17 µV, respectively. It indicated that latanoprost lacrimal suppository has a good therapeutic effect on glaucoma.


Asunto(s)
Glaucoma , Prostaglandinas F Sintéticas , Humanos , Latanoprost/uso terapéutico , Supositorios , Prostaglandinas F Sintéticas/farmacología , Prostaglandinas F Sintéticas/uso terapéutico , Hidrogeles/uso terapéutico , Glaucoma/tratamiento farmacológico
5.
Int J Anal Chem ; 2022: 6805501, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35832780

RESUMEN

In order to overcome the problem of long-term stability of perovskite solar cells, the author proposes a method to study the effects of nanosemiconductor materials on the thermal stability of solar cells. In this method, n = 3 and n = 1 (C6H5(CH2)2NH3)2(CH3NH3)n-1Pbn I3n+1 two-dimensional nanoperovskite films were investigated on glass substrates and indium tin oxide (ITO) substrates, respectively, on the thermal stability. Experimental results show that the glass-based nanoperovskite PMPI3 film was partially decomposed into PbI2 after being heated at 160°C. When the temperature reaches 180°C, the film is completely decomposed into PbI2, and the perovskite PMPI3 film with ITO as the substrate is completely decomposed into PbI2 when the heating temperature reaches 140°C. The charge transfer between the perovskite film and the substrate is the physical reason for its easier thermal decomposition on the ITO substrate. Suggestions for improving the thermal stability of perovskite solar cell devices are given from the aspects of device design and fabrication process.

6.
Polymers (Basel) ; 14(6)2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35335498

RESUMEN

Polymeric membranes, such as polyamide thin film composite membranes, have gained increasing popularity in wastewater treatment, seawater desalination, as well as the purification and concentration of chemicals for their high salt-rejection and water flux properties. Membrane biofouling originates from the attachment or deposition of organic macromolecules/microorganisms and leads to an increased operating pressure and shortened service life and has greatly limited the application of polymeric membranes. Over the past few years, numerous strategies and materials were developed with the aim to control membrane biofouling. In this review, the formation process, influence factors, and consequences of membrane biofouling are systematically summarized. Additionally, the specific strategies for mitigating membrane biofouling including anchoring of hydrophilic monomers, the incorporation of inorganic antimicrobial nanoparticles, coating/grafting of cationic bactericidal polymers, and the design of multifunctional material integrated multiple anti-biofouling mechanisms, are highlighted. Finally, perspectives on the challenges and opportunities in anti-biofouling polymeric membranes are shared, shedding light on the development of even better anti-biofouling materials in near future.

7.
ACS Appl Mater Interfaces ; 14(27): 31225-31233, 2022 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-35762451

RESUMEN

Electronic skins (e-skins) are increasingly investigated and applied in wearable devices, but the robustness and convenient production of traditional e-skins are restricted. In this work, electrospun sandwich-structured elastic films (ESEFs) are developed and utilized as capacitive e-skins. The ESEFs consist of two nanocomposite mats as the electrode layers and a sandwiched thermoplastic polyurethane (TPU) mat as the dielectric layer. The nanocomposite mats are composed of thermoplastic polyurethane (TPU) and AgNW-bridged MXene (AgNW, silver nanowire; MXene, Ti3C2Tx) conductive network. The resulting ESEFs achieve a tensile strength of 14.80 MPa, an elongation at break of 270%, and an outstanding antifatigue property. E-skins of such ESEFs have the ability to respond to both strain and pressure with a high gauge factor (GF) (strain: GF = 1.21; pressure: GF = 0.029 kPa-1), wide response range (strain: 0-150%; pressure: 0-70 kPa), low response time, and outstanding stability (2000 cycles). On the basis of integrated sensing performances, such e-skins are further applied in monitoring various mechanical stimuli in daily life, including bending of a plastic plate, joint bending, and swallowing.

8.
J Colloid Interface Sci ; 607(Pt 1): 431-439, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34509117

RESUMEN

Polydopamine (PDA)-based self-adhesive hydrogel sensors are extensively explored but it is still a challenge to construct PDA-based hydrogels by free radical polymerization. Herein, a new approach to construct self-adhesive hydrogels by conducting free radical polymerization in both aqueous phase and micelle phase is developed. The following two-phase polymerization processes account for the formation of the self-adhesive hydrogels. The first one is the polymerization of acrylamide (AM) and dopamine (DA) in aqueous phase to form adhesive component PAM-PDA (PAM, polyacrylamide; PDA, polydopamine). The second one is the polymerization of hydrophobic monomer 2-methoxyethyl acrylate (MEA) in micelles of an amphiphilic block copolymer Pluronic F127 diacrylate (F127DA). The poly(2-methoxyethyl acrylate) (PMEA) networks help to maintain the high robustness of the hydrogel. Because PMEA and PDA form in relatively separated phases, the inhibition effect of PDA on the free radical polymerization process of PMEA is weakened. Based on this mechanism, mechanically strong and adhesive hydrogels are achieved. The introduced ions during preparation process, such as Na+, OH- and K+, endow the resulting hydrogels ionic conductivity. Resistive strain sensor of the hydrogel achieves a high gauge factor (GF) of 5.26, a response time of 0.25 s and high sensing stability. Because of the adhesiveness, such hydrogel sensor can be applied as wearable sensors in monitoring various human motions. To further address the freezing and drying problems of the hydrogels, organohydrogels are constructed in glycerol-water mixed solvent. The organohydrogels exhibit outstanding anti-freezing property and moisture retention ability, and their adhesiveness is well maintained in subzero conditions. Capacitive pressure sensors of the organohydrogels possessing a GF of 2.05 kPa-1, high sensing stability and reversibility, are demonstrated and explored in monitoring diverse human motions.


Asunto(s)
Adhesivos , Hidrogeles , Radicales Libres , Humanos , Micelas , Polimerizacion , Cementos de Resina , Agua
9.
Polymers (Basel) ; 13(16)2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34451339

RESUMEN

The boosting of consumer electronics and 5G technology cause the continuous increment of the power density of electronic devices and lead to inevitable overheating problems, which reduces the operation efficiency and shortens the service life of electronic devices. Therefore, it is the primary task and a prerequisite to explore innovative material for meeting the requirement of high heat dissipation performance. In comparison with traditional thermal management material (e.g., ceramics and metals), the polymer-based thermal management material exhibit excellent mechanical, electrical insulation, chemical resistance and processing properties, and therefore is considered to be the most promising candidate to solve the heat dissipation problem. In this review, we summarized the recent advances of two typical polymer-based thermal management material including thermal-conduction thermal management material and thermal-storage thermal management material. Furtherly, the structural design, processing strategies and typical applications for two polymer-based thermal management materials were discussed. Finally, we proposed the challenges and prospects of the polymer-based thermal management material. This work presents new perspectives to develop advanced processing approaches and construction high-performance polymer-based thermal management material.

10.
Chemosphere ; 263: 128001, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32828050

RESUMEN

Influences of colloidal stabilities of nanoparticles (NPs) on the bioaccumulation of co-existing pollutants remains largely unknown. In this study, two oxidation products of nanoscale zero-valent iron (nZVI) with totally varied colloidal stabilities, termed highly oxidized nZVI (HO-nZVI) and lowly oxidized nZVI (LO-nZVI), were exposed to zebrafish with chromium (Cr); this approach was used to investigate the impacts of colloidal stability of oxidized nZVI on the bioaccumulation of Cr in zebrafish. A significant increase in the Cr and NP content in the viscera of fish in the presence of the oxidized nZVI after 20 days of exposure was confirmed, which indicated that Cr was consumed by fish through the uptake of the NPs. Furthermore, a significantly higher level of the HO-nZVI accumulated in the viscera in contrast to LO-nZVI, which suggested that the colloidal stability of NP is a crucial factor when evaluating the accessibility of NPs to zebrafish. Thus, HO-nZVI induced a significantly stronger enhancement of Cr content in fish than LO-nZVI. Our results suggest that oxidized nZVI will act as the carrier of co-existing heavy metals and change the transportation and distribution of heavy metals in zebrafish; moreover, the colloidal stability of NP will have a significant influence on the bioaccumulation of coexisting Cr.


Asunto(s)
Cromo/metabolismo , Nanopartículas/metabolismo , Contaminantes Químicos del Agua/metabolismo , Pez Cebra/metabolismo , Animales , Bioacumulación , Cromo/análisis , Compuestos Férricos , Hierro , Oxidación-Reducción , Contaminantes Químicos del Agua/análisis
11.
ACS Appl Mater Interfaces ; 13(1): 1441-1451, 2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33397087

RESUMEN

Highly sensitive capacitive-type pressure sensor has been achieved by fabricating reliefs on solution-processable hydrogel electrodes. Hybrid PVA/PANI hydrogels (PVA, poly(vinyl alcohol); PANI, polyaniline) with a fully physically cross-linked binary network are selected as the electrodes of the pressure sensors. On the basis of the solution processability, reliefs are fabricated on the surface of PVA/PANI hydrogel electrodes by a template method. The gauge factor (GF) is enhanced by introducing reliefs and regulated by controlling the composition and relief dimension of hydrogel electrodes. The optimized pressure sensor containing reliefs achieves the highest GF of 7.70 kPa-1 and a sensing range of 0-7.4 kPa. Furthermore, the freezing and drying problems of the hydrogel sensors are overcome by introducing a binary solvent of water/glycerol and the pressure sensing ability at -18 °C has been achieved. Finally, monitoring of various pressures in daily life, such as joint bending, blowing, and brush writing, is demonstrated using such pressure sensors.

12.
Dalton Trans ; 50(33): 11640-11649, 2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34357366

RESUMEN

New types of electromagnetic (EM) wave absorption materials with a light weight, strong absorption ability and wide absorption frequency have been widely explored. Nevertheless, it is still an intractable challenge to design the structure of the materials and rationalize multiple components. In this work, one-dimensional (1D) CoFe2/C@MoS2 composites were prepared via electrospinning technology, high-temperature carbonization and hydrothermal method. SEM and TEM images reveal that the as-prepared CoFe2/C fibers with a 1D structure are well coated with MoS2. The excellent absorption performance of the composites is mainly attributed to the 1D structure and the ideal impedance matching. CoFe2/C@MoS2 composites show strong absorption ability with an optimal reflection loss (RL) of -66.8 dB (13.28 GHz) at a matching thickness of 2.12 mm. Meanwhile, the composite possesses an effective absorption frequency range between 10.70 and 16.02 GHz with a bandwidth of 5.32 GHz. These results indicate that CoFe2/C@MoS2 composites will become promising lightweight and highly efficient MA materials.

13.
J Colloid Interface Sci ; 600: 209-218, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34030004

RESUMEN

Metal-organic framework (MOF) materials have caused widespread concerns in the field of microwave absorption, due to the unique microstructure and electronic state. Herein, the CoZn/C@MoS2@polypyrrole (PPy) composites were prepared through MOF self-template method. The MoS2 sheets and PPy shell incorporated for optimizing impedance matching of two-dimensional (2D) CoZn/C composites. The introduction of MoS2 sheets and PPy shell endowed the composites with enhanced microwave absorption. The as-prepared CoZn/C@MoS2@PPy composites showed a minimum reflection loss (RL) of -49.18 dB with the thickness of 1.5 mm. In addition, the effective absorption bandwidth (EAB, RL values exceeding -10 dB) covered 4.56 GHz, which showed greater performances than CoZn/C composites under a lower thickness (<2 mm). This work not only provides a facile route for fabricating MOF-derived carbon-based composites as microwave absorbers, but also broadens the application of MOF materials.

14.
J Colloid Interface Sci ; 600: 90-98, 2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34004433

RESUMEN

In this work, one-dimensional (1D) ZnFe2O4@carbon@MoS2/FeS2 composites were synthesized by hydrothermal method, magnetic-field-induced distillation-precipitation polymerization and high-temperature carbonization. The structure, morphology, composition, magnetic performance and electromagnetic (EM) wave absorbing properties of the composites were systematically studied. The composites show strong microwave absorption (MA) capacity with a minimum reflection loss (RLmin) value of -52.5 dB at 13.2 GHz, and have an effective absorption frequency range of 10.10-15.08 GHz with a bandwidth of 4.98 GHz when the thickness is 2.23 mm. It is expected that as-synthesized 1D ZnFe2O4@carbon@MoS2/FeS2 composites can be a promising EM wave absorption material.

15.
Environ Sci Pollut Res Int ; 27(35): 44177-44182, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32761349

RESUMEN

Predicting the aggregation tendency of nanoscale zero-valent iron (nZVI), oxidized nZVI, in particular, is crucial for the risk assessment of nZVI in aquatic environments. In this study, the comprehensive effects of the pH and ionic strength (IS) on the aggregation behaviors of two highly oxidized nZVIs (HO-nZVI) were examined. Compared with hematite nanoparticles, HO-nZVI presented a sudden acceleration in aggregation under critical conditions; moreover, the morphology of the HO-nZVI aggregates at pH and IS values higher or lower than the critical conditions was significantly different. Furthermore, owing to the differences in magnetization between the two prepared HO-nZVI samples, their critical coagulation conditions were significantly different. The significant changes in the aggregation behavior of the HO-nZVI samples were analyzed using colloidal theories, and the aggregation tendency of HO-nZVI under specific conditions could be simulated by calculating the theoretical critical conditions of aggregation via a method that takes into account the hydrochemical properties, magnetization, and surface charge of HO-nZVI. To examine the correctness of the method, we compared the experimentally determined colloidal stability of HO-nZVI in water samples collected from nearby rivers with the theoretically predicted value. The results indicated that the method was adequate for most situations, except for those in which the hydrochemical properties of the water samples were close to the critical coagulation conditions. Our study proposes a theoretical approach that is viable for simulating the colloidal stability of magnetic nanoparticles in aquatic environments; we anticipate that it will further facilitate the risk assessment of nanoparticles.


Asunto(s)
Nanopartículas del Metal , Contaminantes Químicos del Agua , Hierro , Concentración Osmolar , Oxidación-Reducción
16.
Front Chem ; 7: 388, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31214571

RESUMEN

Solid composite polymer electrolytes are the optimal candidate for all solid-state lithium batteries, because of their enhanced ionic conductivities, long-life cycle ability and compatibility to lithium anode. Herein, we reported a kind of solid composite polymer electrolyte comprised of poly(ethylene oxide), graphitic-like carbon nitride and lithium perchlorate, which was prepared by a facile solution blending method. Microstructure of the solid composite polymer electrolyte was regulated by thermal annealing and interaction among components and was characterized by XRD, DSC, FTIR-ATR, and ROM. The obtained solid composite polymer electrolyte achieved an ionic conductivity as high as 1.76 × 10-5 S cm-1 at 25°C. And the electrochemical stable window and the lithium ion transference number, t+, were also obviously enhanced. LiFePO4/Li solid-state batteries with the annealed PEO-LiClO4-g-C3N4 solid polymer electrolyte presented a high initial discharge capacity of 161.2 mAh g-1 and superior cycle stability with a capacity retention ratio of 81% after 200 cycles at 1C at 80°C. The above results indicates that the thermal annealing treatment and g-C3N4 as a novel structure modifier is crucial for obtaining the high-performance solid composite polymer electrolytes used in the all solid-state lithium battery.

17.
ACS Appl Mater Interfaces ; 11(29): 26412-26420, 2019 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-31257857

RESUMEN

Ionogels are ideal candidate materials for flexible sensors, but their stretchability and fatigue resistance are limited. Herein, highly stretchable, fatigue-resistant, electrically conductive, and temperature-tolerant ionogels are investigated and further applied in fabricating high-performance flexible sensors. The ionogels consist of a poly(acrylic acid) (PAA) network and a commonly used room-temperature ionic liquid (RTIL) named 1-ethyl-3-methylimidazolium dicyanamide ([EMIm][DCA]). Dually acrylated Pluronic F127 (F127DA) was utilized to cross-link the PAA network, and [EMIm][DCA] was physically confined in the PAA network. Because of their special cross-linking structure, the PAA ionogels are highly stretchable (>850%), tough, and fatigue-resistant, and they are also conductive, transparent, and temperature-tolerant because of the existence of [EMIm][DCA]. On the basis of their integrated performances, the PAA ionogels were further utilized to fabricate strain sensors and pressure sensors. The ionogel-based strain sensors have high sensitivity, low response time (200 ms), wide strain-sensing range (0-750%), excellent durability (>1400 cycles), and good temperature tolerance and can be applied to detect various human motions. The pressure sensors also have a high response speed (256 ms) and excellent sensitivity (GF = 0.73 kPa-1), which offers an opportunity to detect force generated by finger touching and water droplets.

18.
ACS Appl Mater Interfaces ; 10(16): 14045-14054, 2018 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-29608268

RESUMEN

The first example of dually synergetic network hydrogel, which has integrated mechanical stretchability, thermal responsiveness, and electrical conductivity, has been constructed by a versatile and topological co-cross-linking approach. Poly( N-isopropylacrylamide) (PNIPAAm) is introduced as the thermally responsive ingredient, and polyaniline (PANI) is selected as the electrically conductive ingredient. PNIPAAm network is cross-linked by double-bond end-capped Pluronic F127 (F127DA). PANI network is doped and cross-linked by phytic acid. These two ingredients are further mechanically interlocked. Due to the integrated multiple functionalities, the topologically co-cross-linked hydrogels, as will be mentioned as F-PNIPAAm/PANI hydrogels, can be fabricated into resistive-type strain sensors. The strain sensors can achieve a gauge factor of 3.92, a response time of 0.4 s, and a sensing stability for at least 350 cycles and can be further applied for monitoring human motions, including motion of two hands, bending of joints, and even swallowing and pulse rate. Moreover, F-PNIPAAm/PANI hydrogels are utilized to construct efficient temperature alertors based on the disconnection of circuits induced by volume shrinkage at high temperature.

19.
Spectrochim Acta A Mol Biomol Spectrosc ; 204: 657-664, 2018 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-29982156

RESUMEN

A rhodamine-based fluorescent probe for Cu2+ and ATP has been designed. The fluorescence intensity/absorbance was significantly enhanced upon the addition of Cu2+ owning to the opening of the spiro-ring of rhodamine, which quickly returned to the original level due to the reconstruction of the probe by the reacting with ATP. Cu2+/ATP-induced fluorescent intensity/aborbance changes showed a good linear relationship with the concentration of Cu2+/ATP in the range of 2-20 µM/0-10 µM with a detection limit of 0.1 µM/1.0 µM. The proposed method is simple in design and fast in operation, and is suitable for the reversible monitoring of Cu2+ and ATP in bioanalytical applications.


Asunto(s)
Adenosina Trifosfato/análisis , Cobre/análisis , Colorantes Fluorescentes/química , Rodaminas/química , Animales , Límite de Detección , Modelos Lineales , Ratones , Ratones Desnudos , Imagen Óptica , Reproducibilidad de los Resultados , Espectrometría de Fluorescencia , Contaminantes Químicos del Agua/análisis
20.
Anal Sci ; 31(12): 1285-9, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26656819

RESUMEN

Chemosensors provide an efficient and low-cost approach to the detection of various metal ions and small molecules. In the present work, we present a detailed investigation of a simple, easily-prepared, yet efficient, coumarin-based sensor for Hg(2+). The sensor is based on a fluorescent group of coumarin. When exposed to Hg(2+), the sensor solution shows a significant color change from yellow to red, and a fluorescence change from green to orange. Further study revealed that the sensor responds solely to Hg(2+), and shows excellent selectivity even in the presence of other potential competition metal ions, including Na(+), K(+), Co(2+), Fe(2+), Cd(2+), Cu(2+), Ni(2+), Ag(+), Zn(2+), Mg(2+), Mn(2+), Pb(2+), Fe(3+). Furthermore, the sensor has been successfully applied to detect Hg(2+) in a form of test paper, which may promote easy and effective application of the sensor.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA