Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nanotechnology ; 34(50)2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37725960

RESUMEN

The adsorption and sensor performance of hazardous gases containing sulfur (SO2, H2S and SO3) on pristine, Cr and Mo doped NbS2monolayers (Cr-NbS2and Mo-NbS2) were investigated in detail based on density functional theory. The comparative analysis of the parameters such as density of states, adsorption energy, charge transfer, recovery time and work function of the systems showed that the pristine NbS2monolayer have poor sensor performance for sulfur-containing hazardous gases due to weak adsorption capacity, insignificant charge transfer and insignificant changes in electronic properties after gas adsorption on the surface. After doping with Cr atoms, the adsorption performance of Cr-NbS2was significantly improved, and it can be used as a sensor for SO2and H2S gases and as an adsorbent for SO3gas. The adsorption performance of Mo-NbS2is also significantly improved by doping with Mo atoms, and it can be used as a sensor for H2S gas and as an adsorbent for SO2and SO3gas. Therefore, Cr-NbS2and Mo-NbS2are revealed to be sensing or elimination materials for the harmful gases containing sulfur (SO2, H2S and SO3) in the atmosphere.

2.
J Colloid Interface Sci ; 669: 600-611, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38729008

RESUMEN

Tremendous challenges remain to develop high-efficient catalysts for carbon dioxide reduction reaction (CO2RR) owing to the poor activity and low selectivity. However, the activity of catalyst with single active site is limited by the linear scaling relationship between the adsorption energy of intermediates. Motivated by the idea of multiple activity centers, triple metal clusters (M = Cr, Mn, Fe, Co, Ni, Cu, Pd, and Rh) doped PC6 monolayer (M3@PC6) were constructed in this study to investigate the CO2RR catalytic performance via density functional theory calculations. Results shows Mn3@PC6, Fe3@PC6, and Co3@PC6 exhibit high activity and selectivity for the reduction of CO2 to CH4 with limiting potentials of -0.32, -0.28, and -0.31 V, respectively. Analysis on the high-performance origin shows the more binding sites in M3@PC6 render the triple-atom anchored catalysts (TACs) high ability in regulating the binding strength with intermediates by self-adjusting the charges and conformation, leading to the improved performance of M3@PC6 than dual-atom doped PC6. This work manifests the huge application of PC6 based TACs in CO2RR, which hope to prove valuable guidance for the application of TACs in a broader range of electrochemical reactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA