Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 333: 117439, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-36758406

RESUMEN

Infection of antibiotic-resistant pathogens mostly occurs in rural areas. In this paper, the dissemination of antibiotic resistance genes (ARGs) through fecal sewage treatment facilities to the ecosystem in a typical rural area is investigated. Household three-chamber septic tanks (TCs), household biogas digesters (BDs), wastewater treatment plants (WWTPs), vegetable plots, water ponds, etc. Are taken into account. The relative abundance of ARGs in fecal sewage can be reduced by BDs and WWTPs by 80% and 60%, respectively. While TCs show no reduction ability for ARGs. Fast expectation-maximization microbial source tracking (FEAST) analysis revealed that TCs and BDs contribute a considerable percentage (15-22%) of ARGs to the surface water bodies (water ponds) in the rural area. Most ARGs tend to precipitate in the sediments of water bodies and stop moving downstream. Meanwhile, the immigration of microorganisms is more active than that of ARGs. The results provide scientific basic data for the management of fecal sewage and the controlling of ARGs in rural areas.


Asunto(s)
Antibacterianos , Aguas del Alcantarillado , Antibacterianos/farmacología , Aguas Residuales , Genes Bacterianos , Ecosistema , Farmacorresistencia Microbiana/genética
2.
Chemosphere ; 316: 137718, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36592841

RESUMEN

Polyvinyl chloride (PVC) plastic wastes can bring a series of problems during pyrolysis or incineration such as the emission of dioxins, corrosion, slagging in the reactors, etc. Hydrothermal treatment of PVC plastics has been intensively studied as it can efficiently remove chlorine from PVC plastics under relatively mild reaction conditions (220-300 °C) to provide value-added products. Meanwhile, the research progress, knowledge gaps, and challenges in this field have not been well addressed yet. This paper gives a comprehensive review of hydrothermal dechlorination of PVC plastics regarding reactors, process variables and fundamentals, possible applications, and challenges. The main pathways of hydrothermal dechlorination of PVC plastics are elimination and -OH nucleophilic substitution. Catalytic hydrothermal and co-hydrothermal optimize the chemical reactions and transportation, boosting the dechlorination of PVC plastics. Hydrochar derived from PVC plastics, on the one hand, is coalified close to sub-bituminous and bituminous coal and can be used as low-chlorine solid fuel. On the other hand, it is also a porous material with aromatic structure and oxygen-containing functional groups, with good potential as adsorbent or energy storage materials. Further studies are expected to focus on waste liquid treatment, revealing the energy and economic balance, reducing the dechlorination temperature and pressure, expanding the application of products, etc. for promoting the implementation of the hydrothermal treatment of PVC plastic wastes.


Asunto(s)
Cloro , Dioxinas , Cloro/química , Cloruro de Polivinilo/química , Temperatura , Incineración , Cloruros , Plásticos
3.
J Hazard Mater ; 448: 130925, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36753913

RESUMEN

Fecal sewage (FS), composed of human feces and wastewater, potentially contains microplastics (MPs) that are prone to environmental pollution. In this study, 65 FS samples, as collected from 65 villages in 27 Chinese provinces, have been employed to investigate the characteristics of MPs in three kinds of household FS treatment facilities of rural regions, and the possibility of FS irrigation as the source of MPs in farmlands. As a result, seven physicochemical properties and microbial community of FS were detected, and pertinent social statistical data were collected to determine influencing factors of MPs. The abundance of FS-based MPs ranged from 47.16 to 143.05 particles L-1, with an average 90.38 ± 20.63 particles L-1. The FS from northern China had higher MPs abundance than that from southern and northwestern China. Average MPs abundance was cesspit (101.33) > septic tank (86.54) > biogas digester (84.11). The estimated mass of FS-based MPs entering farmlands in China was 7.8 × 103-5.6 × 104 tons a year. Chemical oxygen demand and genus Phascolarctobacterium might mainly affected MPs abundance in FS, while some other factors such as suspended substance, ambient temperature, and medical care spending were also significantly correlated with FS-based MPs abundance.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Humanos , Aguas del Alcantarillado , Plásticos , Contaminantes Químicos del Agua/análisis , China , Monitoreo del Ambiente
4.
RSC Adv ; 12(3): 1840-1849, 2022 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-35425159

RESUMEN

Graphitic carbon nitride (g-C3N4) is widely used in photocatalytic adsorption and degradation of pollutants, but there are still some problems such as low adsorption performance and high electron-hole recombination efficiency. Herein, we propose a new molten salt assisted thermal polycondensation strategy to synthesize biomass porous carbon (BPC) loaded on g-C3N4 composites (designated as BPC/g-C3N4) with a hollow tubular structure, which had a high surface area and low electron-hole recombination rate. The study shows that the morphology of g-C3N4 changes dramatically from massive to hollow tubular by molten salt assisted thermal polycondensation, which provides a base for the loading of BPC, to construct a highly effective composite photocatalyst. BPC loaded on g-C3N4 could be used as the active site to enhance Oxytetracycline (OTC) removal efficiency by adsorption and with higher electron-hole separation efficiency. As a result, the BPC(5%)/g-C3N4 sample presented the highest photocatalytic degradation efficiency (84%) for OTC degradation under visible light irradiation. The adsorption capacity and photocatalytic reaction rate were 3.67 and 5.63 times higher than that of the g-C3N4, respectively. This work provided a new insight for the design of novel composite photocatalysts with high adsorption and photocatalytic performance for the removal of antibiotic pollutants from wastewater.

5.
Bioresour Technol ; 346: 126643, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34974104

RESUMEN

Mature compost and rice bran were used as bulking agents to perform Food Waste Rapid Composting (FWRC) in a patented composting bin. The characteristics of CO2 and N2O emission and the denitrifying community were investigated. The release of CO2 and N2O concentrated in the early composting stage and reduced greatly after 28 h, and the N2O emission peak of the treatment with mature compost was 8.5 times higher than that of rice bran. The high N2O generation resulted from massive denitrifying bacteria and NOx--N in the composting material. The relative abundances of denitrifiers, correspondingly genes of narG and nirK were much higher in the treatment with mature compost, which contributed to the N2O emission. Moreover, the correlation matrices revealed that N2O fluxes correlated well with moisture, pH, temperature, and the abundances of nirK and nosZ genes during FWRC.


Asunto(s)
Compostaje , Eliminación de Residuos , Dióxido de Carbono , Desnitrificación , Alimentos , Óxido Nitroso/análisis , Suelo
6.
Sci Total Environ ; 764: 144200, 2021 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-33418355

RESUMEN

In the traditional Fenton process, the efficient generation of hydroxyl radical (HO) strongly relies on an acidic circumstance and the iron ions would precipitate and form large amounts of hazardous iron-containing sludge at alkaline pH. To realize stable heterogeneous Fenton-like catalytic degradation at alkaline condition, Fe3O4 submicrospheres with SiO2 coating were successfully synthesized by using water glass as the silica sources via a facile ultrasound assisted method. The as-obtained Fe3O4@SiO2 spheres were further used as catalysts for the Fenton-like degradation of tetracycline hydrochloride (TC). The Fe3O4@SiO2 submicrospheres exhibited superior catalytic activity in higher pH environment (pH value = 11), and the degradation efficiency toward TC was ca. 80% after ten successive runs. The kinetics for the catalytic degradation of TC were agreed well with the second-order kinetic model. The reaction rate constant (k) over the Fe3O4@SiO2 submicrospheres at a pH value of 11 was 7.69 times greater than that at a pH value of 3. Reactive species scavenging experiments revealed that HO and superoxide radical (O2- / HO2-) played a dominant role during the Fenton-like degradation of TC at pH 3 and pH 11, respectively. Possible Fenton-like degradation pathways of TC were proposed through the identification of intermediates using the high performance liquid chromatography coupled with mass spectrometry (HPLC-MS), which involved cleavage of methyl groups, N-dimethyl group, and hydroxy groups, ring-opening reaction, etc. The degradation efficiency of TC was close to 91.5% and total organic carbon (TOC) in solution was eliminated by about 41.4% at the optimized conditions. In a word, with the unique acidic surface properties and abundant Si-OH bonds, the Fe3O4@SiO2 submicrospheres exhibited well dispersion, good catalytic activity, strong alkali resistance and excellent recyclability in an ultrasonic-Fenton-like system.

7.
J Hazard Mater ; 380: 120847, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31326836

RESUMEN

In order to reveal the chlorine behavior during hydrothermal carbonization (HTC) of medical waste, polyvinyl chloride and medical waste model (MW) were respectively treated by HTC at temperature ranging from 220 °C to 300 °C for 30 min. HTC products were characterized by Fourier Transform Infrared Spectrometer, X-ray Photoelectron Spectroscopy, etc. It is found that HTC can efficiently remove chlorine from both polyvinyl chloride and MW. The most dramatical dechlorination can be induced by HTC at around 240 °C. With HTC temperature increased, organic chlorine in HT-MW and solid product from polyvinyl chloride HTC (HT-PVC) is decreased. Interestingly, with 240 °C HTC, the organic chlorine of HT-MW was 15.30%, much lower than that of HT-PVC of 86.84%, indicating the cellulosic materials in MW can significantly boost the conversion of organic chlorine into inorganic form in HTC at 240 °C. While spherical particles assigned to HTC of cellulosic materials aggregate at the pores of polyvinyl chloride particle, trapping the release of chlorine into the liquid, consequently to lower dechlorination efficiency compared to that of polyvinyl chloride. Since the chlorine retain in the solid product was mainly in form of inorganic, further dechlorination is potential for MW by combining HTC with leaching/extracting.

8.
Bioresour Technol ; 208: 49-57, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26921869

RESUMEN

This paper aims at lowering the temperature for thermal pretreatment (TPT) of antibiotic mycelial residue (AMR) by alkali addition but without significantly worsening subsequent anaerobic digestion (AD) for biogas. Batch TPT and AD experiments were conducted in a bench-scale autoclave and several bench-scale anaerobic digesters, respectively. The results showed that the methane yield (<200 ml·(g VS)(-1)) was visibly lower with lowering pretreatment temperature, compared to that (290 ml·(g VS)(-1)) for TPT at the optimal temperature of 120°C, while it rebounded to 231 ml·(g VS)(-1) when proper amounts of alkali were employed (to adjust the pH of the AMR to 12) for TPT at 80°C. Further analysis indicated that low-temperature alkaline TPT was significantly less energy-consumption compared to only TPT, at cost of small amounts of alkali. It was more convenient and economical to implement AD of AMR in combination with alkaline TPT at mild temperatures for biogas.


Asunto(s)
Antibacterianos/química , Biocombustibles , Biotecnología/métodos , Metano/biosíntesis , Micelio , Álcalis/química , Anaerobiosis , Reactores Biológicos , Biotecnología/instrumentación , Cefalosporinas/química , Temperatura
9.
Bioresour Technol ; 192: 257-65, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26038331

RESUMEN

Antibiotic residues are difficult to be treated or utilized because of their high water content and residual antibiotics. This article is devoted to investigating the possibility of biogas production from cephalosporin C residue (CPCAR), one typical type of antibiotic residues, via anaerobic digestion in combination with hydrothermal pretreatment (HTPT). The results from the bench-scale experiments showed that the combination of HTPT and anaerobic digestion can provide a viable way to convert CPCAR into biogas, and the biogas and methane yields reached 290 and 200 ml(g TS)(-1), respectively. This article further evaluated the proposed technology in terms of energy balance and technical feasibility based on theoretical calculation using the data from a pilot HTPT test. It was shown that the process is totally self-sufficient in energy and its main challenging problem of ammonia inhibition can be solved via ammonia stripping.


Asunto(s)
Antibacterianos/química , Amoníaco/química , Anaerobiosis , Biocombustibles , Reactores Biológicos , Metano/química , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA